

#### An Investigation into

#### The Recovery of Copper and Nickel from Composite Samples from the

#### PHIKWE-SELEBI DEPOSIT

prepared for

# NORTH AMERICAN NICKEL

Project 18559-01 – Final Report December 13, 2021

#### NOTES

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at *http://www.sgs.com/en/Terms-and-Conditions.aspx*. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

ACCREDITATION: SGS Minerals Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical, and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Lakefield: http://palcan.scc.ca/SpecsSearch/GLSearchForm.do.

SGS Canada Inc. P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

| Executive Summary                                           | v  |  |  |  |  |
|-------------------------------------------------------------|----|--|--|--|--|
| Introduction                                                |    |  |  |  |  |
|                                                             |    |  |  |  |  |
| lestwork Summary1                                           |    |  |  |  |  |
| 1. Sample Receipt and Preparation                           | 1  |  |  |  |  |
| 1.1. Individual Samples Preparation                         | 2  |  |  |  |  |
| 1.2. Composites Preparation                                 | 3  |  |  |  |  |
| 2. Head Characterization                                    | 5  |  |  |  |  |
| 2.1. Head Assays                                            | 5  |  |  |  |  |
| 2.2. Mineralogy                                             | 7  |  |  |  |  |
| 2.2.1. Mineral Modals                                       | 7  |  |  |  |  |
| 2.2.2. Nickel Deportment                                    | 9  |  |  |  |  |
| 2.2.3. Liberation and Association                           | 11 |  |  |  |  |
| 3. Grindability Testwork                                    | 15 |  |  |  |  |
| 3.1. SMC Test                                               | 15 |  |  |  |  |
| 3.2. Bond Rod Mill Grindability Test                        | 16 |  |  |  |  |
| 3.3. Bond Ball Mill Grindability Tests                      | 17 |  |  |  |  |
| 3.4. Bond Abrasion Tests                                    | 18 |  |  |  |  |
| 4. Flotation Testwork                                       | 19 |  |  |  |  |
| 4.1. Test Program Overview                                  | 19 |  |  |  |  |
| 4.2. Flowsheet Development                                  | 20 |  |  |  |  |
| 4.2.1. Primary Grind                                        | 20 |  |  |  |  |
| 4.2.2. Depressants (Na <sub>2</sub> SO <sub>3</sub> , DETA) | 21 |  |  |  |  |
| 4.2.3. Alternative Flowsheet Options                        | 25 |  |  |  |  |
| 4.2.4. Cu -Ni Separation                                    | 29 |  |  |  |  |
| 4.3. Flowsheet Evaluation with P and S Comp                 | 31 |  |  |  |  |
| 4.4. Locked Cycle Testing                                   | 33 |  |  |  |  |
| 4.4.1. LCT-1 and LCT-2 Test Results                         | 34 |  |  |  |  |
| 4.4.2. LCT-3 Test Results                                   | 37 |  |  |  |  |
| 4.5. Detailed Concentrate Assays                            | 41 |  |  |  |  |
| 4.6. Process Mineralogy                                     | 42 |  |  |  |  |
| Conclusions and Recommendations                             | 45 |  |  |  |  |

Appendix A – Sample Receipt and Preparation

Appendix B – Head Characterization

Appendix C – Grindability Testing

Appendix D – Batch Flotation Testing

# List of Tables

| Table I: Head Assay and Hardness of Testing Samples                                         | v   |
|---------------------------------------------------------------------------------------------|-----|
| Table II: LCT-2 and LCT-3 Metallurgical Projection                                          | vii |
| Table 1: As Received Sample Inventory and Weights                                           | 1   |
| Table 2: Composites Inventory                                                               | 4   |
| Table 3: Head Assays                                                                        | 6   |
| Table 4: Nickel in Sulphide Distribution                                                    | 7   |
| Table 5: Mineral Modals of Head Samples                                                     | 8   |
| Table 6: SMC Test Results                                                                   | 16  |
| Table 7: Bond Rod Mill Grindability Test Results                                            | 16  |
| Table 8: Bond Ball Mill Grindability Test Results                                           | 17  |
| Table 9: Bond Abrasion Test Results                                                         | 18  |
| Table 10: Summary of Test Objectives                                                        | 19  |
| Table 11: Mineral Composition Summary                                                       | 20  |
| Table 12: Summary of Testing Conditions for tests F-1, F-3, and F-4.                        | 20  |
| Table 13: Summary of Flotation Results of Tests F-1, F-3, and F-4 at Various Primary Grinds | 21  |
| Table 14: Summary of Test Conditions of F-2, F-5 to F-12, and F-23                          | 23  |
| Table 15: Results Summary of Flotation Tests F-2, F-5 to F-12, and F-23                     | 23  |
| Table 16: Summary of Testing Conditions of F-13, F-20, and F-39                             | 25  |
| Table 17: Results Summary of Flotation Tests F-13, F-20, and F-39                           | 28  |
| Table 18: Summary of Testing Conditions for F-16 and F-19                                   | 29  |
| Table 19: Results Summary of Tests F-16 and F-19                                            | 30  |
| Table 20: Summary of Testing Conditions of F-14, F-15, F-17, F-18, F-21, F-22, and F-37     | 32  |
| Table 21: Results Summary of Tests F-14, F-17, and F-21 (S Comp)                            | 32  |
| Table 22: Results Summary of Tests F-15, F-18, F-22, and F-37 (P Comp)                      | 33  |
| Table 23: LCT-1 Metallurgical Projection (B-F)                                              | 37  |
| Table 24: LCT-2 Metallurgical Projection (D-F)                                              | 37  |
| Table 25: Metallurgical Balance of LCT-3                                                    | 38  |
| Table 26: LCT-3 Metallurgical Projection-1 (D)                                              | 39  |
| Table 27: LCT-3 Metallurgical Projection-2 (F-G)                                            | 39  |
| Table 30: Detailed Analysis on LCT-2, LCT-3 Products                                        | 42  |

| Figure I: Locked Cycle Tests (LCT-2 and LCT-3) Flotation Flowsheet                                                      | viii |
|-------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1: Generic Individual Sample Preparation Flowsheet                                                               | 3    |
| Figure 2: Generic Flotation Composite Sample Preparation Flowsheet                                                      | 4    |
| Figure 3: Generic Grindability Composite Sample Preparation Flowsheet                                                   | 5    |
| Figure 4: Nickel Deportment of SN Comp                                                                                  | 9    |
| Figure 5: Nickel Deportment of P Comp and S Comp                                                                        | 10   |
| Figure 6: Chalcopyrite Association in the Head Samples                                                                  | 12   |
| Figure 7: Pentlandite Association in the Head Samples                                                                   | 13   |
| Figure 8: Pyrrhotite Association in the Head Samples                                                                    | 14   |
| Figure 9: Mineral Release Curve of SN Comp                                                                              | 15   |
| Figure 10: RWI of Grind Composites Compared to the SGS Databas                                                          | 16   |
| Figure 11: BWI of Grind Composites Compared to the SGS Database                                                         | 17   |
| Figure 12: AI of Grind Composites Compared to the SGS Database                                                          | 18   |
| Figure 13: Flotation Results of F1, F3, and F4                                                                          | 21   |
| Figure 14: Effect of Na <sub>2</sub> SO <sub>3</sub> alone on Pn Selectivity Against Po                                 | 24   |
| Figure 15: Effect of Na <sub>2</sub> SO <sub>3</sub> and DETA Dosages on Pn Selectivity Against Po                      | 25   |
| Figure 16: Flowsheet of F-13, F-20, and F-39                                                                            | 27   |
| Figure 17: Flowsheet of LCT-2                                                                                           | 36   |
| Figure 18: Flowsheet of LCT-3                                                                                           | 36   |
| Figure 19: Pentlandite Association of Test F-8 Cu/Ni 1 <sup>st</sup> Cleaner Tails and Po 1 <sup>st</sup> Cleaner Tails | 43   |

# **Executive Summary**

Three composite samples (SN Comp, S Comp, P Comp) from the Phikwe – Selebi deposit were prepared for a metallurgical testwork program. The SN Comp represents samples taken from Selebi Main, S Comp represents samples from Selebi North, and the P Comp represents samples from Phikwe South. The historical ore processing in the mine was to produce a bulk flotation concentrate grading at ~3% Cu and ~3% Ni. The main objective of the study was to develop the flowsheet to produce separate marketable copper concentrates (>30% Cu, <1% Ni) and nickel concentrates (>10% Ni) with maximized recoveries. It is notable that this was a quickly executed test program aimed at demonstrating what level of metallurgy may be possible instead of a rigorous redevelopment.

A summary of feed characteristics and the hardness characteristics of the three composite samples is provided in Table I. The copper feed grade varied from 0.42 to 1.90% Cu. The nickel feed grade varied from 0.79 to 1.17% Ni. Nickel sulphide (Ni(s)) assays suggested the majority of the nickel was in sulphide form. Hardness testing revealed the samples to be very soft at SAG mill grind sizes and progressively harder at finer grind sizes. The samples were also slightly abrasive. The sample taken from the Phikwe prospect (P Comp) was a bit harder than the samples taken from Selebi prospect (SN Comp and S Comp).

| Analysis | Unit         | SN Comp | S Comp | P Comp |
|----------|--------------|---------|--------|--------|
| Cu       | %            | 1.07    | 1.90   | 0.42   |
| Ni       | %            | 1.17    | 0.88   | 0.79   |
| Ni(s)    | %            | 1.12    | 0.85   | 0.72   |
| Fe       | %            | 32.3    | 20.6   | 20.5   |
| S        | %            | 16.5    | 11.9   | 10.4   |
|          | Axb          | 143     | 140    | 52.4   |
| SMC      | ta           | 0.99    | 1.04   | 0.43   |
|          | SCSE (kWh/t) | 6.04    | 6.23   | 9.45   |
| AI       | g            | 0.18    | 0.17   | 0.16   |
| RWI      | kWh/t        | 9.30    | 8.90   | 11.4   |
| BWI      | kWh/t        | 12.9    | 13.7   | 13.7   |

Table I: Head Assay and Hardness of Testing Samples

A subsample from each of SN Comp, P Comp, and S Comp was submitted for QEMSCAN mineralogy at a grind size of 80% passing 84  $\mu$ m, 115  $\mu$ m, 122  $\mu$ m, respectively. The major sulphide minerals were identified as chalcopyrite, pentlandite, pyrrhotite, with lesser amounts of pyrite. It's worth mentioning that the pyrrhotite content was very high in these samples, ranging from 22 to 37%. About 80% of the nickel was contained in pentlandite, and ~15% of the remaining nickel was mostly hosted by pyrrhotite in solid solution. Minor amounts of nickel ~5% were hosted by non-sulphide gangue minerals.

The chalcopyrite and pyrrhotite were well-liberated, but pentlandite was poorly liberated, at the grind size submitted for mineralogy. The mineralogy results are consistent with what the client expected based on historical data. The use of regrinding is critical to fully liberate pentlandite for maximizing the nickel recovery and grade.

The flotation flowsheet selected is summarized in Figure I. The flowsheet involved grinding to 80% passing  $\sim$ 70 to  $\sim$ 160 µm followed by Cu/Ni bulk flotation to recover the majority of the copper and nickel. Cu/Ni rougher concentrate was reground to a P<sub>80</sub> of  $\sim$ 30 µm and cleaned once to reject pyrrhotite and non-sulphide gangue. The bulk Cu/Ni cleaner concentrate was further polish ground to clean the mineral surface before undergoing copper-nickel separation. A Po circuit was performed on the Cu/Ni tailings to scavenge residual nickel. A Po rougher was reground to a P<sub>80</sub> of  $\sim$ 25 µm and cleaned to produce a lower grade nickel concentrate.

Locked cycle tests LCT-1 and LCT-2 where completed to demonstrate the bulk Cu/Ni and Po circuits, while LCT-3 was performed to demonstrate the Cu-Ni separation circuit. The combined LCT-1 & LCT-3 and LCT-2 & LCT-3 results are presented in Table II and Table III, respectively.

Copper was well-behaved achieving 74-78% to the Cu concentrate and 94-95% recovery between the two concentrates. The nickel recovery of the first locked cycle test (LCT-1) was lower than expectations (62%), likely due to the reagent dosages not being appropriate for the coarse primary grind ( $F_{80}$  at 150 µm). The second locked cycle test (LCT-2) used a more typical grind size ( $F_{80}$  at 100 µm) and showed slightly better nickel recovery (64%).

High grade copper concentrates were achieved at 29-31% Cu. The low nickel content (<1%) in the copper concentrate was also achievable as shown in the combined LCT-1 & LCT-3 results, when strategies such as a higher lime dosage in the grind and lower dosage of PAX in the copper rougher and scavenger stages were applied. Nickel concentrate grades of 10.5-12.0% Ni containing approximately 3% Cu were achieved. Low values of platinum group elements were present in the concentrates with no obvious deleterious elements.

The batch flotation testwork also demonstrated that a low sulphur tailing (<0.5%) were achievable.

| Broduct                                              | Wt Assays, % |      |      | % Distribution |      |      |      |
|------------------------------------------------------|--------------|------|------|----------------|------|------|------|
| Product                                              | %            | Cu   | Ni   | S              | Cu   | Ni   | S    |
| Cu 3rd Cl Conc 1-2                                   | 2.4          | 30.9 | 0.55 | 34.4           | 78.8 | 1.1  | 5.3  |
| Cu Ro Scav Tail                                      | 4.3          | 3.64 | 14.5 | 34.2           | 15.4 | 54.2 | 9.2  |
| Cu/Ni Scalp Tail                                     | 11.7         | 0.16 | 1.07 | 32.8           | 1.9  | 11.0 | 24.2 |
| Po 3rd Cl Conc                                       | 1.7          | 0.78 | 5.54 | 37.1           | 1.3  | 8.1  | 3.9  |
| Po 1st Cl Tails                                      | 22.2         | 0.09 | 1.02 | 33.6           | 2.0  | 19.9 | 47.0 |
| Po Rougher Tail                                      | 57.8         | 0.01 | 0.11 | 2.90           | 0.6  | 5.8  | 10.5 |
| Comb. Ni Conc<br>(Cu Ro Scav Tails + Po 3rd Cl Conc) | 5.9          | 2.84 | 12.0 | 35.0           | 16.7 | 62.3 | 13.0 |
| Head (Calc.)                                         | 100.0        | 1.00 | 1.14 | 15.9           | 100  | 100  | 100  |
| Head (Dir.)                                          |              | 1.07 | 1.17 | 16.5           |      |      |      |

## Table II: LCT-1 and LCT-3 Metallurgical Projection

## Table III: LCT-2 and LCT-3 Metallurgical Projection

| Product                                              | Wt    | Assays, % |      |      | % Distribution |      |      |
|------------------------------------------------------|-------|-----------|------|------|----------------|------|------|
| Floduct                                              | %     | Cu        | Ni   | S    | Cu             | Ni   | S    |
| Cu 3rd Cl Conc 1-2                                   | 2.8   | 28.8      | 1.92 | 34.4 | 74.2           | 4.6  | 6.3  |
| Cu Ro Scav Tail                                      | 6.6   | 3.19      | 11.0 | 35.0 | 19.2           | 59.0 | 14.2 |
| Cu/Ni Scalp Tail                                     | 7.5   | 0.16      | 0.86 | 33.8 | 1.1            | 5.2  | 15.6 |
| Po 3rd Cl Conc                                       | 0.8   | 1.66      | 7.02 | 36.3 | 1.3            | 4.8  | 1.9  |
| Po 1st Cl Tails                                      | 23.7  | 0.18      | 1.12 | 34.5 | 3.8            | 21.6 | 50.2 |
| Po Rougher Tail                                      | 58.5  | 0.01      | 0.10 | 3.29 | 0.4            | 4.8  | 11.8 |
| Comb. Ni Conc<br>(Cu Ro Scav Tails + Po 3rd Cl Conc) | 7.4   | 3.02      | 10.5 | 35.1 | 20.5           | 63.7 | 16.1 |
| Head (Calc.)                                         | 100.0 | 1.10      | 1.23 | 16.3 | 100            | 100  | 100  |
| Head (Dir.)                                          |       | 1.07      | 1.17 | 16.5 |                |      |      |



Figure I: Final Locked Cycle Tests (LCT-2 and LCT-3) Flotation Flowsheet

## Introduction

Mr. Mike Ounpuu on behalf of North American Nickel contacted SGS Minerals with a request for redevelopment of the Phikwe-Selebi milling process flowsheet.

The mine originally commenced operations in 1973 and continued operations until 2016, when the mill was shutdown due to poor economic conditions. Head grade in the final 10 years of production was in the range of 0.65% Cu and Ni. The mill generated a low-grade bulk concentrate assaying approximately 3% for each of Cu and Ni, and ~30% for S. The nickel content in pyrrhotite is understood to be 0.5%. Pentlandite occurs as coarse grains as well as exsolution flames in pentlandite, similar to many nickel deposits. Liberation data suggests that 70% of the pentlandite is finer than 40 microns and that non-liberated pentlandite is associated primarily with pyrrhotite. All copper occurs as chalcopyrite, which tends to liberate slightly coarser than pentlandite.

The main objective of the current study is to evaluate a more typical flotation approach to this style of mineralization, with the goal to generate separate marketable Cu and Ni concentrates. The metallurgical targets for this program are to maximize recoveries into concentrates having the following grades:

- A Cu concentrate expected to be approximately 30% Cu and <1% Ni.
- A Ni concentrate grading >10% Ni, but hopefully closer to 12% Ni.

The scope of work included feed characterization (assays and mineralogy), ore hardness evaluations on three samples, and flotation testing.

This report presents the results of the testwork. Results were provided to Mr. Mike Ounpuu, North American Nickel's consultant, as they became available. Progress was discussed with Mr. Ounpuu regularly over the course of the program.

mo

Jing Liu, PhD Metallurgist

0

Dan Imeson Manager – Mineral Processing

Experimental work by: D. Ariyanayagam, M. Lortie Report preparation by: J. Liu Reviewed by: D. Imeson

# **Testwork Summary**

## 1. Sample Receipt and Preparation

A shipment of individually marked samples was received at the SGS Lakefield facility on June 4, 2021 from North American Nickel and assigned the internal receipt number 0056-JUN21. The shipment consisted of three skids of 35 pails weighing 719.5 kg in total. Each pail consisted of individual bagged samples with distinct identification numbers marked on the bags. A summary of the thirty-nine (39) as-received samples and the inventoried weights are summarized in Table 1.

| Sample ID | Area         | Zone       | Level                                 | As Received Weight (kg) |
|-----------|--------------|------------|---------------------------------------|-------------------------|
| D15551    | Selebi North | South Limb | 925mL / 750 Section                   | 13.1                    |
| D15552    | Selebi North | South Limb | 925mL / 750 Section                   | 7.8                     |
| D15553    | Selebi North | South Limb | 925mL / 750 Section                   | 8.5                     |
| D15554    | Selebi North | South Limb | 925mL / 750 Section                   | 15.8                    |
| D15555    | Selebi North | South Limb | 925mL / 750 Section                   | 17.6                    |
| D15556    | Selebi North | South Limb | 925mL / 750 Section                   | 18.3                    |
| D15558    | Selebi North | South Limb | 925mL / 750 Section                   | 14.8                    |
| D15559    | Selebi North | South Limb | 925mL / 750 Section                   | 14.2                    |
| D15560    | Selebi North | N2 Limb    | 895m/2100 Section                     | 10.2                    |
| D15561    | Selebi North | N2 Limb    | 895m/2100 Section                     | 11.2                    |
| D15562    | Selebi North | N2 Limb    | 895m/2100 Section                     | 11.2                    |
| D15563    | Selebi North | N2 Limb    | 895m/2100 Section                     | 21.1                    |
| D15564    | Selebi North | N2 Limb    | 895m/2100 Section                     | 15.5                    |
| D15565    | Selebi North | N2 Limb    | 895m/2100 Section                     | 10.8                    |
| D15566    | Selebi North | N3 Limb    | 856m/1600 Section & 796m Stope Access | 16.9                    |
| D15567    | Selebi North | N3 Limb    | 856m/1600 Section & 796m Stope Access | 15.5                    |
| D15568    | Selebi North | N3 Limb    | 856m/1600 Section & 796m Stope Access | 17.5                    |
| D15569    | Selebi North | N3 Limb    | 856m/1600 Section & 796m Stope Access | 14.3                    |

Table 1: As Received Sample Inventory and Weights

Continued on next page....

1

| Sample ID | Area         | Zone                       | Level             | As Received Weight (kg) |
|-----------|--------------|----------------------------|-------------------|-------------------------|
| D15570    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 21.2                    |
| D15571    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 20.8                    |
| D15572    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 21.7                    |
| D15573    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 21.8                    |
| D15581    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 8.0                     |
| D15574    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 15.6                    |
| D15575    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 17.8                    |
| D15576    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 6.0                     |
| D15577    | Phikwe South | Board/Pillar Stope         | 870m/3200 Section | 10.2                    |
| D15578    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 21.3                    |
| D15579    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 20.1                    |
| D15580    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 21.6                    |
| D15582    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 21.1                    |
| D15583    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 20.9                    |
| D15584    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 20.9                    |
| D15585    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 17.4                    |
| D15586    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 21.7                    |
| D15587    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 20.2                    |
| D15588    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 19.9                    |
| D15589    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 20.3                    |
| D15590    | Selebi Main  | Sub Level Open Stop (SLOS) | 850mL             | 13.6                    |

Table 1: As Received Sample Inventory and Weights (Cont'd)

## 1.1. Individual Samples Preparation

All thirty-nine (39) of the samples were prepared for the test program. Each sample was crushed to nominal 1.5" (or 40 mm). One quarter was split for grindability composite makeup, the remaining three quarters were crushed to nominal 6 mesh (or 3.4 mm). Approximately 100-200 g was also split and pulverized for Cu, Ni, and S assays. The remaining sample was stored for flotation composite makeup. The generic sample preparation flowsheet applied to each of the tested samples is illustrated in Figure 1.



Figure 1: Generic Individual Sample Preparation Flowsheet

## 1.2. Composites Preparation

Three composites representing samples taken from three areas were prepared - Selebi North (SN Comp), Selebi Main (S Comp), and Phikwe South (P Comp), following the instruction provided by the client.

Figure 2 and Figure 3 depict the generic sample preparation flowsheet for the flotation composites and grindability composites, respectively. For the flotation composite preparation, the selected individual samples (nominal 6 mesh) were composited to target typical resource average head grades at the instruction of the client. Once blended, about 40-60 kg of subsample was taken and stage-crushed to -10 mesh (or 1.7 mm). They were rotary split into 2 kg test charges. Approximately 100-200 g was also split and pulverized for Cu, Ni, Ni(S), S, and ICP Scan assays. The remaining samples were stored for potential future testwork.

For the grindability composite preparation, the selected samples (nominal 1.5") were composited in the same ratio as the flotation composites. About 25 kg was taken for the SMC test, about 5 kg was used for AI test. The remainder of the grindability composite combined with the SMC reject was stage-crushed to - 1/2" (or 12.7 mm). A 15 kg subsample was submitted for the Bond rod mill grindability test (RWI). About 10 kg was stage-crushed to -6 mesh (or 3.35 mm) and submitted for the Bond ball mill grindability test (BWI).

The weights of the flotation composites and grindability composites are summarized in Table 2. Full details of the sample preparations are provided in the appendix (Appendix A).

| Comp ID      | Comp Abbr ID | Weights, kg |            |  |
|--------------|--------------|-------------|------------|--|
| Compile      |              | Float Comp  | Grind Comp |  |
| Selebi North | SN Comp      | 121.0       | 43.2       |  |
| Selebi Main  | S Comp       | 97.6        | 35.7       |  |
| Phikwe South | P Comp       | 76.8        | 28.3       |  |





## Figure 2: Generic Flotation Composite Sample Preparation Flowsheet



Figure 3: Generic Grindability Composite Sample Preparation Flowsheet

## 2. Head Characterization

#### 2.1. Head Assays

A subsample of each of the thirty-nine (39) individual samples was submitted for assays, which included copper, nickel, and sulphur. The results are provided in Appendix B.

A subsample of each of the three flotation composites was submitted for head assays, which included copper, nickel, nickel as sulphide (NiS), sulphur, gold, platinum, palladium, rhodium, mercury, and ICP-MS Scan analysis. Another subsample was submitted to analyze the nickel in the methanol bromine leach residue. The head assays are summarized in Table 3.

The distribution of the nickel in sulphide was calculated with the following two methods, results are shown in Table 4.

- Method A: Based on the Ni(s) and the total nickel direct assays, the difference of these two was calculated to be the nickel in non-sulphide minerals.
- Method B: Based on the Ni(s) and Ni in leach residue, calculate the total nickel.

All the sulphide minerals were assumed to be leached out in Method B, thus mass losses in the residue at 43%, 25%, and 32% for SN Comp, P Comp, and S Comp, respectively, as determined by mineralogy analysis. The nickel in sulphide distribution calculated from both methods were similar. The nickel as sulphide accounted for ~95% for the SN Comp, 93% for the P Comp, and ~96% for the S Comp.

| Analyte | Unit | SN Comp | P Comp | S Comp |
|---------|------|---------|--------|--------|
| Cu      | %    | 1.07    | 0.42   | 1.90   |
| Ni      | %    | 1.17    | 0.79   | 0.88   |
| Ni(s)   | %    | 1.12    | 0.72   | 0.85   |
| Fe      | %    | 32.3    | 20.5   | 20.6   |
| S       | %    | 16.5    | 10.4   | 11.9   |
| Au      | g/t  | < 0.02  | < 0.02 | 0.18   |
| Pt      | g/t  | 0.12    | < 0.02 | 0.06   |
| Pd      | g/t  | 0.05    | 0.02   | 0.08   |
| Rh      | g/t  | < 0.02  | < 0.02 | < 0.02 |
| Hg      | g/t  | < 0.3   | < 0.3  | < 0.3  |
| Ag      | g/t  | 3.1     | 0.9    | 7.1    |
| Al      | g/t  | 41600   | 58400  | 58400  |
| As      | g/t  | < 10    | < 10   | < 10   |
| Ва      | g/t  | 83.6    | 174    | 95.1   |
| Be      | g/t  | 0.46    | 1.7    | 0.66   |
| Bi      | g/t  | 2.3     | 2.7    | 6.1    |
| Са      | g/t  | 24800   | 27000  | 36700  |
| Cd      | g/t  | 1.8     | 0.4    | 3.1    |
| Со      | g/t  | 657     | 435    | 437    |
| Cr      | g/t  | 140     | 224    | 142    |
| Cu      | g/t  | 10400   | 4100   | 19100  |
| K       | g/t  | 3740    | 14200  | 5070   |
| Li      | g/t  | < 30    | < 30   | < 30   |
| Mg      | g/t  | 23200   | 33900  | 42400  |
| Mn      | g/t  | 760     | 757    | 916    |
| Мо      | g/t  | 2.4     | 12.4   | 3.2    |
| Na      | g/t  | 10500   | 14100  | 11400  |
| Ni      | g/t  | 12100   | 8080   | 9220   |
| Р       | g/t  | < 200   | 234    | 216    |
| Pb      | g/t  | 21.4    | 16.9   | 8.5    |
| Sb      | g/t  | < 0.8   | < 0.8  | < 0.8  |
| Se      | g/t  | 22      | 13     | 31     |
| Sn      | g/t  | 3       | 5      | 6      |
| Sr      | g/t  | 57.9    | 48.1   | 47.1   |
| Ti      | g/t  | 1290    | 1960   | 1360   |
| TI      | g/t  | < 0.4   | 1      | < 0.4  |
| U       | g/t  | 2.5     | 5.9    | 3.7    |
| V       | g/t  | 119     | 97     | 51     |
| Y       | g/t  | 7.2     | 17.2   | 10.2   |
| Zn      | g/t  | 86      | 80     | 135    |

## Table 3: Head Assays

| Element  |                     | Ni or Ni(s) Assay, % |        |        | Ni (S) Distribution |        |        |
|----------|---------------------|----------------------|--------|--------|---------------------|--------|--------|
|          | Element             | SN Comp              | P Comp | S Comp | SN Comp             | P Comp | S Comp |
|          | Ni(s)               | 1.12                 | 0.72   | 0.85   | 95.7                | 90.5   | 96.1   |
| Method A | Ni(s) - Repeat      | 1.08                 | 0.74   | 0.87   | 92.3                | 93.7   | 98.9   |
|          | Ni(s) - Average     | 1.10                 | 0.73   | 0.86   | 94.0                | 92.1   | 97.5   |
|          |                     |                      |        |        |                     |        |        |
| Method B | Ni(s) - Average     | 1.10                 | 0.73   | 0.86   | 94.6                | 93.7   | 93.8   |
|          | Ni in Leach Residue | 0.11                 | 0.07   | 0.08   | 5.39                | 6.28   | 6.17   |
|          |                     |                      |        |        |                     |        |        |
|          | Ni Total calc.      | 1.16                 | 0.78   | 0.91   | 100                 | 100    | 100    |
|          | Ni Total dir.       | 1.17                 | 0.79   | 0.88   |                     |        |        |

## Table 4: Nickel in Sulphide Distribution

## 2.2. Mineralogy

The subsample used for the mineralogy study was taken from the product of the grind calibration test at 30 minutes in a 2 kg rod mill. The K<sub>80</sub> of SN Comp, P Comp, and S Comp for 30 minutes of grinding were 84  $\mu$ m, 115  $\mu$ m, and 122  $\mu$ m, respectively. The SN Comp sample was screened into four size fractions, i.e., +106  $\mu$ m, -106/+53  $\mu$ m, -53/+20  $\mu$ m, and -20  $\mu$ m. The P Comp and S Comp was submitted as received, unsized. Each size fraction or sample as-received was assayed and mounted into graphite-impregnated polished sections.

The following sections briefly discuss mineral modals, nickel deportment, and liberation and association of the main sulphide minerals. Further information can be found in Appendix B.

## 2.2.1. Mineral Modals

The mineral modals are summarized in Table 5. Major sulphide minerals included chalcopyrite (the only copper mineral), pentlandite (the primary nickel carrier), and pyrrhotite, with lesser quantities of pyrite. The non-sulfide minerals mainly included amphibole/pyroxene, plagioclase, quartz, iron oxide, and chlorite/clays.

| Sample ID            |                    | SN Comp | P Comp | S Comp |
|----------------------|--------------------|---------|--------|--------|
| K <sub>80</sub> , μm |                    | 84      | 115    | 122    |
|                      | Pyrrhotite         | 37.0    | 22.1   | 23.9   |
|                      | Chalcopyrite       | 3.10    | 1.26   | 5.97   |
|                      | Pentlandite        | 3.13    | 1.97   | 2.47   |
|                      | Pyrite/Marcasite   | 0.12    | 2.31   | 0.22   |
|                      | Other_Sulphides    | 0.04    | 0.03   | 0.04   |
|                      | Fe-Oxides          | 6.25    | 0.07   | 1.59   |
|                      | Other_Oxides       | 0.15    | 0.04   | 0.05   |
|                      | Chlorite/Clays     | 7.90    | 8.82   | 10.3   |
|                      | Biotite            | 1.77    | 14.8   | 3.16   |
| Mineral              | Talc               | 0.17    | 0.12   | 0.13   |
| Mass (%)             | Quartz             | 7.71    | 11.2   | 7.31   |
| Wid55 (70)           | Plagioclase        | 10.2    | 16.4   | 10.7   |
|                      | Amphibole/Pyroxene | 20.6    | 19.1   | 33.0   |
|                      | K-Feldspar         | 0.65    | 1.22   | 0.38   |
|                      | Epidote            | 0.56    | 0.11   | 0.31   |
|                      | Titanite/sphene    | 0.10    | 0.06   | 0.01   |
|                      | Other Silicates    | 0.34    | 0.07   | 0.19   |
|                      | Carbonates         | 0.02    | 0.09   | 0.13   |
|                      | Apatite            | 0.11    | 0.19   | 0.09   |
|                      | Other              | 0.06    | 0.05   | 0.07   |
|                      | Total              | 100     | 100    | 100    |

## Table 5: Mineral Modals of Head Samples

## 2.2.2. Nickel Deportment

Pentlandite hosts the majority of the nickel. Pyrrhotite and silicates gangue minerals are believed to contain low to very low level of nickel in solid-solution based on historical data, at 0.5% and 0.026% Ni, respectively. Due to the abundance of pyrrhotite, the proportion of nickel in these minerals could be significant: ~15% for SN Comp, ~14% for P Comp, and ~12% for S Comp. The nickel distribution in sulphides other than pentlandite and pyrrhotite (i.e., millerite) was fairly low. The deportment of sulphide nickel is summarized in Figure 4 and Figure 5.



Figure 4: Sulphide Nickel Deportment of SN Comp



Figure 5: Nickel Deportment of P Comp and S Comp

#### 2.2.3. Liberation and Association

The liberation classes of the minerals present in the ore have been defined as follows:

- Free: A mineral with >95% area percent of particle
- Liberated: A mineral with <95 but ≥80% area percent of particle
- Middlings: A mineral with <80% but ≥50% area percent of particle
- Sub-Middling: A mineral with <50% but ≥20% area percent of particle
- Locked: A mineral with <20% area percent of particle

The chalcopyrite was well-liberated for all three samples submitted, 87% free and liberated for the SN Comp at a  $K_{80}$  of 84 µm, ~82% for the P Comp at a  $K_{80}$  of 115 µm, 94% for the S Comp at a  $K_{80}$  of 122 µm.

The liberation of pentlandite was poor at a  $K_{80}$  of ~90-120 µm for all three samples, ~48-65%. The portion of free and liberated pentlandite for the SN Comp improved to 83% at -20 µm. This indicates a fine regrind is likely required.

The pyrrhotite were found to be quite well-liberated for all three samples submitted, 96% free and liberated for the SN Comp and S Comp, and ~87% for the P Comp.

The summary charts for the association of the chalcopyrite, pentlandite, and pyrrhotite are presented in Figure 6, Figure 7, and Figure 8, respectively. Additional information on liberation can be found in Appendix B. The non-liberated pentlandite was mainly associated with pyrrhotite, ~30% of the non-liberated pentlandite grains being associated with pyrrhotite. Regrinding could be useful to liberate pentlandite from pyrrhotite.



Figure 6: Chalcopyrite Association in the Head Samples



Figure 7: Pentlandite Association in the Head Samples



## Figure 8: Pyrrhotite Association in the Head Samples

The effect of grind size on liberation of the major sulphide minerals is demonstrated by the mineral release curves in Figure 9, which shows that a primary grind at approximately 100  $\mu$ m might be reasonable, but a fine regrind to ~20  $\mu$ m is necessary for good nickel recovery/grade.



Figure 9: Mineral Release Curve of SN Comp

## 3. Grindability Testwork

Each of the three grind composites were submitted for the SMC test, Bond rod mill grindability test, Bond abrasion test, and Bond ball mill grindability test. Results are briefly summarized below. The complete test details are provided in Appendix C.

## 3.1. SMC Test

The SMC test is an abbreviated version of the standard JK drop-weight test performed on 100 rocks from a single size fraction (-31.5+26.5 mm in this case). The SMC test was performed on the three grind composite samples. The test results are summarized in Table 6 and detailed in the JKTech report which is appended (Appendix C), along with the test procedure, calibration, and test details.

The SMC test results are preferably calibrated against reference samples submitted to the standard JK drop-weight test (DWT) in order to consider the natural 'gradient of hardness' by size, which can widely vary from one ore to another. The SMC results were calibrated against the JK database average, as no standard DWT tests were performed as part of this project.

The samples were categorized as very soft (SN Comp and S Comp) to medium (P Comp) in terms of resistance to impact breakage, with A x b values ranging from 143 to 52.4.

The relative densities varied from 3.13 to 3.73, with the latter value being associated with SN Comp.

| Sample Name | A    | b    | Axb  | Hardness<br>Percentile | t <sub>a</sub> <sup>1</sup> | DWI<br>(kWh/m <sup>3</sup> ) | M <sub>ia</sub><br>(kWh/t) | M <sub>ih</sub><br>(kWh/t) | M <sub>ic</sub><br>(kWh/t) | SCSE<br>(kWh/t) | Relative<br>Density |  |
|-------------|------|------|------|------------------------|-----------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-----------------|---------------------|--|
| SN Comp     | 77.7 | 1.84 | 143  | 7                      | 0.99                        | 2.6                          | 6.6                        | 4.1                        | 2.1                        | 6.0             | 3.73                |  |
| S Comp      | 74.3 | 1.89 | 140  | 7                      | 1.04                        | 2.5                          | 6.8                        | 4.1                        | 2.1                        | 6.2             | 3.49                |  |
| P Comp      | 68.1 | 0.77 | 52.4 | 44                     | 0.43                        | 6.0                          | 15.3                       | 11.1                       | 5.7                        | 9.5             | 3.13                |  |

#### Table 6: SMC Test Results

<sup>1</sup>The t<sub>a</sub> value reported as part of the SMC procedure is an estimate

#### 3.2. Bond Rod Mill Grindability Test

Bond rod mill grindability tests were performed at 14 mesh of grind on received samples. The test results are summarized in Table 7, and compared to the SGS database in Figure 10. The rod mill work indices (RWI's) for grind composites were similar for the two composites from Selebi, ~9 kWh/t, and slightly harder for the Phikwe sample (P Comp), at 11.4 kWh/t. The samples were categorized as soft to very soft.

Table 7: Bond Rod Mill Grindability Test Results

| Sample Name | Mesh of<br>Grind | F <sub>80</sub><br>(μm) | Ρ <sub>80</sub><br>(μm) | Gram per<br>Revolution | Work Index<br>(kWh/t) | Hardness<br>Percentile |
|-------------|------------------|-------------------------|-------------------------|------------------------|-----------------------|------------------------|
| SN Comp     | 14               | 9,679                   | 887                     | 18.3                   | 9.3                   | 9                      |
| S Comp      | 14               | 9,147                   | 884                     | 20.0                   | 8.9                   | 7                      |
| P Comp      | 14               | 9,744                   | 849                     | 12.5                   | 11.4                  | 20                     |



Figure 10: RWI of Grind Composites Compared to the SGS Database

#### 3.3. Bond Ball Mill Grindability Tests

Bond ball mill grindability tests were performed at 48 mesh of grind on received samples. The test results are summarized in Table 8, and compared to the SGS database in Figure 11. The test details are provided in Appendix C. The ball mill work indices (BWI's) for grind composites were similar, ranging from 12.9 to 13.7 kWh/t. SN Comp was categorized as moderately soft, and S and P Comp were categorized as medium.

| Sample Name | Mesh of<br>Grind | F <sub>80</sub><br>(μm) | Ρ <sub>80</sub><br>(μm) | Gram per<br>Revolution | Work Index<br>(kWh/t) | Hardness<br>Percentile |  |  |
|-------------|------------------|-------------------------|-------------------------|------------------------|-----------------------|------------------------|--|--|
| SN Comp     | 100              | 2,129                   | 123                     | 1.98                   | 12.9                  | 34                     |  |  |
| S Comp      | 100              | 2,035                   | 126                     | 1.89                   | 13.7                  | 43                     |  |  |
| P Comp      | 100              | 2,207                   | 129                     | 1.91                   | 13.7                  | 42                     |  |  |

**Table 8: Bond Ball Mill Grindability Test Results** 



Figure 11: BWI of Grind Composites Compared to the SGS Database

## 3.4. Bond Abrasion Tests

Bond abrasion tests were performed on 12.7 to 19 mm (1/2" to 3/4") fractions of the as-received crushed samples. The test results are summarized in Table 9 and compared to the SGS database in Figure 12. The samples were characterized as slightly abrasive, the abrasion index (AI) ranging from 0.157 to 0.179 g.

| Sample Name | AI<br>(g) | Percentile of<br>Abrasivity |
|-------------|-----------|-----------------------------|
| SN Comp     | 0.179     | 32                          |
| S Comp      | 0.168     | 30                          |
| P Comp      | 0.157     | 28                          |

**Table 9: Bond Abrasion Test Results** 



Figure 12: AI of Grind Composites Compared to the SGS Database

## 4. Flotation Testwork

## 4.1. Test Program Overview

The main objective of the flotation test program was to develop a flowsheet that can produce separate marketable copper and nickel concentrates by applying typical conditions used for a Cu/Ni project. The SN Comp was the main sample used for flowsheet development, followed by confirmatory tests using the P Comp and S Comp. Locked cycle tests were conducted on SN Comp sample.

A summary of test objectives is given in Table 10.

| Test ID | Test Objective                                                                             |
|---------|--------------------------------------------------------------------------------------------|
| SN Comp |                                                                                            |
| F1      | Conduct intitial rougher kinetics test, at $K_{80}$ of 100 $\mu$ m                         |
| F2      | Based on F1, conduct intitial open-circuit cleaning test                                   |
| F3      | Conduct rougher kinetics test, at K <sub>80</sub> of ~150 μm                               |
| F4      | Conduct rougher kinetics test, at K <sub>80</sub> of ~75 μm                                |
| F5      | Similar to F2, test Po depressants Na2SO3 and DETA, 500/150g/t                             |
| F6      | Similar to F2, test Po depressants Na2SO3 only, 500g/t                                     |
| F7      | Similar to F5, with half Na2SO3 and DETA, 250/75 g/t                                       |
| F8      | Similar to F5, with less Na2SO3 and DETA, 100/50 g/t                                       |
| F9      | Similar to F5, with less Na2SO3 and DETA, 100/25 g/t                                       |
| F10     | Similar to F9, with 100/10 g/t Na2SO3 and DETA                                             |
| F11     | Similar to F10, with coarse primary grind ( $K_{80}$ =150 $\mu$ m) and finer Po regrind    |
| F12     | Similar to F9, with 0/25 g/t Na2SO3 and DETA                                               |
| F13     | Based on F9, with bulk Ro Conc regrind, followed with 2nd regrind on the cleaner tails     |
| F16     | Similar to F9, with no Na2SO3 and 25 g/t DETA. Full Cleaner test with CuSEP                |
| F19     | Similar to F16, with polish grind on CuSEP, clean Po Ro Conc and Cu/Ni Cl tails separately |
| F20     | Similar to F19, with coarse primary grind (K80=150 μm)                                     |
| F23     | Based on F2, no DETA in the regrind.                                                       |
| F39     | Evaluate flowsheet with Cu/Ni CI Scav Tails regrind with Po Ro Conc                        |
| S Comp  |                                                                                            |
| F14     | Conduct rougher kinetics test on S Comp, target K80 ~150 μm                                |
| F17     | Similar to F9, 1st Cleaner Kinetics on S Comp                                              |
| F21     | Similar to F16/F19, Using S Comp                                                           |
| P Comp  |                                                                                            |
| F15     | Conduct rougher kinetics test on P Comp, target K80 ~150 µm                                |
| F18     | Similar to F9, 1st Cleaner Kinetics on P Comp                                              |
| F22     | Similar to F16/F19, Using P Comp                                                           |
| F37     | Evaluate flowsheet with Cu/Ni CI Scav Tails regrind with Po Ro Conc                        |

## Table 10: Summary of Test Objectives

All flotation tests were performed using laboratory Denver flotation cells applying industry standard flotation practices. The collector used in the program was Potassium Amyl Xanthate (PAX). Lime was used as the pH modifier and MIBC was used as the frother. Sodium sulphite (Na<sub>2</sub>SO<sub>3</sub>) and Diethylenetriamine (DETA) were used as the depressants.

Test products were filtered, dried, weighed, and submitted for Cu, Ni, and S assays. Particle sieve analyses were completed to size coarser products (Flotation Feed or Rougher / Scavenger tailings), while a Malvern Mastersizer was used to size finer products (regrind product or Cleaner tailings).

Flotation test details are provided in the appendix (Appendix D). A summary of test results is provided in the following sections.

The typical flowsheet was to recover most of the chalcopyrite (Cp) and pentlandite (Pn), i.e., the main copper and nickel minerals, during the Cu/Ni Rougher stage, while minimizing the recovery of pyrrhotite (Po). The remaining pentlandite would be recovered during the Po Rougher stage, with higher pyrrhotite recoveries producing a low-grade concentrate. The Cu/Ni Rougher Concentrate and Po Rougher Concentrate were re-ground and cleaned separately. The Cu - Ni separation would be performed on the Cu/Ni Cleaner Concentrate, to produce a copper concentrate and a nickel concentrate (Cu Tailings).

The flotation test results include the calculation of mineral contents from the elemental assays. The mineral composition used for these calculations are summarized in Table 11.

|     | Cu   | Ni   | S    | Other |
|-----|------|------|------|-------|
| Ср  | 34.5 | 0.0  | 35.0 | 30.5  |
| Pn  | 0.0  | 36.0 | 33.0 | 31.0  |
| Po  | 0.0  | 0.5  | 38.5 | 61.0  |
| Ga* | 0.0  | 0.0  | 0.0  | 100.0 |

 Table 11: Mineral Composition Summary

Ga\* represents the silicate gangue minerals

## 4.2. Flowsheet Development

## 4.2.1. Primary Grind

Three rougher flotation kinetics tests (F-1, F-3, F-4) were performed, at various primary grind sizes ( $F_{80}$  of 71 µm, 100 µm, 162 µm), which included rougher flotation of a Cu/Ni concentrate and Po Rougher flotation circuits. The testing conditions are summarized in Table 12.

| Table 12: Summary of Testing Conditions for | tests F-1, F-3, and F-4. |
|---------------------------------------------|--------------------------|
|---------------------------------------------|--------------------------|

|         |                      | Cu/Ni      | Roughers | 5                      | Po Roughers  |            |         |                        |  |  |  |
|---------|----------------------|------------|----------|------------------------|--------------|------------|---------|------------------------|--|--|--|
| Test ID | F <sub>80</sub> (μm) | PAX<br>g/t | рН       | Residence<br>Time, min | CuSO₄<br>g/t | PAX<br>g/t | рН      | Residence<br>Time, min |  |  |  |
| F-1     | 100                  | 15         | 9.2-9.4  | 5                      | 50           | 50         | natural | 13                     |  |  |  |
| F-3     | 162                  | 15         | 9.0-9.3  | 5                      | 0            | 15         | natural | 13                     |  |  |  |
| F-4     | 71                   | 15         | 9.0-9.2  | 5                      | 0            | 15         | natural | 13                     |  |  |  |

The flotation results of the rougher kinetics tests are summarized in Table 13 and depicted in Figure 13.

The copper and nickel recoveries of Cu/Ni Rougher Concentrates 1-3 in test F-1, at  $F_{80}$  of 100 µm, were the highest, at 99% Cu and 82% Ni, with a bit higher mass pull (26% vs 22-23% in F-3 and F-4). However, the copper or nickel recoveries against the mass pull as well as the pentlandite vs pyrrhotite recoveries were similar in all three tests. It is possible that all three grind sizes could achieve similar metallurgical targets with proper reagent schemes. Due to the tight project timeline, test F-1 at  $F_{80}$  of 100 µm with the best recoveries was selected as the baseline for most of the subsequent tests.

|         | E (um)                | Product           | \A/+ % |      |      | Assa | ys, % |      |      |      | [    | Distribu | ution, 🤅 | 6    |      |
|---------|-----------------------|-------------------|--------|------|------|------|-------|------|------|------|------|----------|----------|------|------|
| Test ID | г <sub>80</sub> (µпт) | Floudel           | WWL /0 | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Cu   | Ni   | S        | Ср       | Pn   | Ро   |
|         |                       | Cu/Ni Ro Conc 1-3 | 25.9   | 3.97 | 3.68 | 34.5 | 11.5  | 9.24 | 71.2 | 98.9 | 82.0 | 52.7     | 98.9     | 90.2 | 47.2 |
| F-1 100 | 100                   | Po Ro Conc 1-3    | 23.1   | 0.04 | 0.81 | 33.7 | 0.11  | 1.05 | 86.4 | 0.9  | 16.2 | 46.0     | 0.9      | 9.2  | 51.3 |
|         | 100                   | Mag Scav Conc     | 7.4    | 0.01 | 0.05 | 1.05 | 0.01  | 0.04 | 2.68 | 0.0  | 0.3  | 0.5      | 0.0      | 0.1  | 0.5  |
|         |                       | Mag Scav Tails    | 43.6   | 0.01 | 0.04 | 0.35 | 0.01  | 0.03 | 0.87 | 0.2  | 1.5  | 0.9      | 0.2      | 0.5  | 1.0  |
|         |                       | Cu/Ni Ro Conc 1-3 | 22.3   | 4.45 | 3.95 | 34.3 | 12.9  | 10.0 | 68.7 | 97.5 | 76.2 | 45.5     | 97.5     | 84.8 | 39.6 |
| F-3     | 162                   | Po Ro Conc 1-3    | 14.7   | 0.09 | 1.10 | 35.2 | 0.25  | 1.80 | 89.7 | 1.2  | 14.0 | 30.8     | 1.2      | 10.1 | 34.1 |
|         |                       | Po Ro Tail        | 63.0   | 0.02 | 0.18 | 6.30 | 0.06  | 0.22 | 16.1 | 1.2  | 9.8  | 23.7     | 1.2      | 5.2  | 26.3 |
|         |                       | Cu/Ni Ro Conc 1-3 | 22.9   | 4.19 | 3.94 | 32.7 | 12.2  | 10.0 | 65.3 | 95.5 | 78.2 | 45.5     | 95.5     | 87.0 | 39.5 |
| F-4     | 71                    | Po Ro Conc 1-3    | 19.2   | 0.16 | 0.92 | 33.3 | 0.47  | 1.36 | 85.0 | 3.1  | 15.3 | 38.9     | 3.1      | 9.9  | 43.1 |
|         |                       | Po Ro Tail        | 57.8   | 0.02 | 0.13 | 4.44 | 0.07  | 0.14 | 11.3 | 1.4  | 6.5  | 15.6     | 1.4      | 3.1  | 17.3 |

Table 13: Summary of Flotation Results of Tests F-1, F-3, and F-4 at Various Primary Grinds



Figure 13: Flotation Results of F1, F3, and F4

## 4.2.2. Depressants (Na<sub>2</sub>SO<sub>3</sub>, DETA)

Based on test F-1, the first cleaner kinetics test was evaluated in test F-2, with both the Cu/Ni rougher concentrate and the Po rougher concentrate reground in a 2 kg rod mil, separately, followed by a Cu/Ni cleaner circuit and a Po cleaner circuit. The nickel grade in Cu/Ni 1<sup>st</sup> cleaner concentrate was low at ~6% Ni, due to high pyrrhotite content. Selective depression of pyrrhotite was understood to be very critical to achieve concentrate grade target based on these initial results.

The evaluation of pyrrhotite depressants sodium sulphite ( $Na_2SO_3$ ) and diethylenetriamine (DETA) was performed in tests F-5 to F-12, and F-23. Various dosages of  $Na_2SO_3$  and DETA were evaluated, to minimize the nickel loss, while maximizing pyrrhotite rejection. Most of the tests were based on test F-2,

with the primary grind at  $F_{80}$  of ~100 µm, except F-11 at  $F_{80}$  of ~150 µm. Key testing conditions and results are summarized in Table 14 and Table 15, respectively.

The main conclusions are summarized below:

- No depressing effect with Na<sub>2</sub>SO<sub>3</sub> alone. See Figure 14. Test F-9 with 500 g/t Na<sub>2</sub>SO<sub>3</sub> alone showed no depressing effect, even a detrimental effect, compared to the baseline test F-2, conducted with no depressants.
- DETA improved the selectivity of pentlandite against pyrrhotite, but its dosage is critical. See Figure 15. With too high a dosage of DETA (>=75 g/t, tests F-5, F-7), pentlandite floated slowly and was overly depressed. When DETA dosage was 10 g/t or less (test F-10), the pyrrhotite depression was no longer effective. DETA dosages at 25-50 g/t (tests F-8, F-9) seemed to be reasonable. The 25 g/t DETA was chosen as the appropriate dosage for subsequent tests due in part to environmental concerns with overdosing DETA.
- Overdosing the collector PAX may deteriorate the depression of pyrrhotite. In test F-12, the 25 g/t
  DETA wasn't able to depress pyrrhotite, likely due to too much collector being added in the Cu/Ni
  cleaner circuit. 'Starving' dosage of PAX is important for maintaining the pyrrhotite depression.

The regrind size of the Cu/Ni 1<sup>st</sup> cleaner feed was targeted at a  $P_{80}$  of ~35 µm, while the Po 1<sup>st</sup> cleaner feed was targeted at a  $P_{80}$  of ~20-30 µm, based on the mineralogy analysis. Initially a 2 kg rod mill was used for both regrinds, however, the rod mill was not efficient for finer regrinding with excessive times to regrind the Po Rougher Concentrate to the target size (48 minutes). For later tests, an attrition mill was applied to the Po circuit regrind.

During the flotation testing program, it was noticed that the mass pull of Cu/Ni rougher concentrate would vary significantly, ranging from ~15 to 25% wt at the same testing conditions and applying similar pull rates. It was suspected that the ore was extremely sensitive to slight variations in the oxidizing – reducing environment due to the very high sulphide content, such as changes in the dissolved oxygen content in the water, grinding media conditions, and the duration from the time it was freshly ground to flotation. Additional measures and controls might be helpful for future testing programs.

|         |                         | Cu/Ni (    | Cleaners      |             |                         | P               | o Cleane   | rs                                     |             |                                           |
|---------|-------------------------|------------|---------------|-------------|-------------------------|-----------------|------------|----------------------------------------|-------------|-------------------------------------------|
| Test ID | Ρ <sub>80</sub><br>(μm) | PAX<br>g/t | Na₂SO₃<br>g/t | DETA<br>g/t | Ρ <sub>80</sub><br>(μm) | Regrind<br>Mill | PAX<br>g/t | Na <sub>2</sub> SO <sub>3</sub><br>g/t | DETA<br>g/t | Special Notes                             |
| F-2     | 34                      | 3          | 0             | 0           | 33                      | RM              | 5          | 0                                      | 0           | Add 50 g/t CuSO₄ to Po Ro                 |
| F-5     | 35                      | 4          | 500           | 150         | 31                      | RM              | 3          | 500                                    | 150         |                                           |
| F-6     | 49                      | 4          | 500           | 0           | 41                      | RM              | 3          | 500                                    | 0           |                                           |
| F-7     | 32                      | 4          | 250           | 75          | 37                      | RM              | 3          | 250                                    | 75          |                                           |
| F-8     | 35                      | 4          | 100           | 50          | 26                      | RM              | 3          | 100                                    | 50          |                                           |
| F-9     | 31                      | 6          | 100           | 25          | 18                      | RM              | 3          | 100                                    | 25          |                                           |
| F-10    | 31                      | 6          | 100           | 10          | 28                      | AM              | 3          | 100                                    | 10          |                                           |
| F-11    | 30                      | 7          | 100           | 10          | 17                      | AM              | 3          | 100                                    | 50          | Primary grind at $F_{80}$ of ~150 $\mu$ m |
| F-12    | 45*                     | 9          | 0             | 25          | 30*                     | RM              | 44         | 0                                      | 25          |                                           |
| F-23    | 41*                     | 5          | 0             | 0           | 41*                     | AM              | 13         | 0                                      | 0           |                                           |

## Table 14: Summary of Test Conditions of F-2, F-5 to F-12, and F-23

S/A on CI Tails

RM represents Rod Mill, AM represents Attrition Mill

#### Table 15: Results Summary of Flotation Tests F-2, F-5 to F-12, and F-23

| Test ID | Product               | \A/+ 0/ |      |      | Assa | ys, % |      |      |      |      | Distrib | ution, % | ,    |      |
|---------|-----------------------|---------|------|------|------|-------|------|------|------|------|---------|----------|------|------|
| Testib  | FIOUUCI               | WVL /0  | Cu   | Ni   | S    | Ср    | Pn   | Po   | Cu   | Ni   | S       | Ср       | Pn   | Po   |
|         | Cu/Ni 1st Cl Conc 1-3 | 13.4    | 7.32 | 6.10 | 35.7 | 21.2  | 16.1 | 59.5 | 95.9 | 69.5 | 29.1    | 95.9     | 79.9 | 21.2 |
|         | Cu/Ni Ro Conc 1-3     | 19.9    | 4.99 | 4.50 | 34.0 | 14.5  | 11.6 | 65.2 | 97.4 | 76.4 | 41.4    | 97.4     | 85.6 | 34.6 |
| F-2     | Po 1st CI Conc 1-4    | 25.4    | 0.09 | 0.93 | 35.1 | 0.26  | 1.33 | 89.8 | 2.2  | 20.1 | 54.4    | 2.2      | 12.5 | 60.7 |
|         | Po Ro Conc 1-3        | 28.3    | 0.09 | 0.88 | 32.8 | 0.25  | 1.25 | 84.0 | 2.4  | 21.1 | 56.8    | 2.4      | 13.2 | 63.4 |
|         | Po Ro Tails           | 51.7    | 0.01 | 0.06 | 0.59 | 0.01  | 0.07 | 1.46 | 0.3  | 2.5  | 1.9     | 0.3      | 1.3  | 2.0  |
|         | Cu/Ni 1st Cl Conc 1-3 | 4.8     | 19.8 | 9.10 | 34.0 | 57.3  | 25.1 | 14.9 | 91.6 | 37.5 | 10.0    | 91.6     | 45.0 | 1.9  |
|         | Cu/Ni Ro Conc 1-3     | 17.7    | 5.62 | 4.85 | 33.7 | 16.3  | 12.6 | 62.0 | 95.7 | 73.4 | 36.3    | 95.7     | 83.2 | 29.1 |
| F-5     | Po 1st Cl Conc 1-3    | 1.8     | 0.95 | 2.70 | 34.4 | 2.75  | 6.35 | 81.4 | 1.7  | 4.2  | 3.8     | 1.7      | 4.3  | 3.9  |
|         | Po Ro Conc 1-3        | 17.8    | 0.18 | 1.06 | 32.3 | 0.52  | 1.78 | 82.0 | 3.1  | 16.1 | 35.0    | 3.1      | 11.8 | 38.8 |
|         | Po Ro Tails           | 64.5    | 0.02 | 0.19 | 7.31 | 0.06  | 0.21 | 18.8 | 1.2  | 10.5 | 28.7    | 1.2      | 5.0  | 32.1 |
|         | Cu/Ni 1st Cl Conc 1-4 | 18.3    | 5.26 | 4.66 | 35.5 | 15.3  | 12.0 | 68.0 | 94.4 | 74.8 | 39.4    | 94.4     | 84.5 | 32.8 |
|         | Cu/Ni Ro Conc 1-3     | 29.0    | 3.37 | 3.26 | 34.2 | 9.78  | 8.04 | 72.9 | 95.9 | 83.1 | 60.1    | 95.9     | 89.8 | 55.8 |
| F-6     | Po 1st Cl Conc 1-3    | 5.9     | 0.34 | 1.25 | 33.8 | 0.98  | 2.28 | 85.1 | 1.9  | 6.4  | 12.0    | 1.9      | 5.1  | 13.1 |
|         | Po Ro Conc 1-3        | 14.9    | 0.21 | 0.88 | 30.5 | 0.61  | 1.35 | 77.4 | 3.1  | 11.5 | 27.6    | 3.1      | 7.8  | 30.5 |
|         | Po Ro Tails           | 64.5    | 0.02 | 0.19 | 7.31 | 0.06  | 0.21 | 18.8 | 1.2  | 10.5 | 28.7    | 1.2      | 5.0  | 32.1 |
|         | Cu/Ni 1st Cl Conc 1-3 | 5.7     | 16.6 | 11.2 | 34.2 | 48.2  | 30.7 | 18.7 | 94.4 | 57.3 | 12.1    | 94.4     | 69.2 | 2.9  |
|         | Cu/Ni Ro Conc 1-3     | 20.0    | 4.89 | 4.28 | 34.5 | 14.2  | 10.9 | 67.3 | 96.8 | 76.5 | 42.6    | 96.8     | 85.9 | 36.2 |
| F-7     | Po 1st Cl Conc 1-3    | 2.5     | 0.55 | 2.56 | 35.2 | 1.60  | 5.94 | 85.0 | 1.3  | 5.6  | 5.4     | 1.3      | 5.7  | 5.6  |
|         | Po Ro Conc 1-3        | 19.0    | 0.13 | 0.90 | 32.6 | 0.36  | 1.33 | 83.2 | 2.4  | 15.3 | 38.3    | 2.4      | 9.9  | 42.5 |
|         | Po Ro Tails           | 61.0    | 0.01 | 0.15 | 5.06 | 0.04  | 0.17 | 13.0 | 0.8  | 8.2  | 19.1    | 0.8      | 4.2  | 21.2 |
|         | Cu/Ni 1st Cl Conc 1-3 | 7.8     | 12.5 | 9.54 | 34.7 | 36.3  | 26.0 | 34.8 | 95.2 | 63.4 | 15.9    | 95.2     | 75.9 | 6.9  |
|         | Cu/Ni Ro Conc 1-3     | 22.0    | 4.46 | 4.08 | 34.8 | 12.9  | 10.4 | 69.8 | 96.5 | 77.1 | 45.4    | 96.5     | 85.9 | 39.5 |
| F-8 F   | Po 1st Cl Conc 1-3    | 2.7     | 0.57 | 2.61 | 35.7 | 1.65  | 6.06 | 86.1 | 1.5  | 6.1  | 5.7     | 1.5      | 6.2  | 6.0  |
|         | Po Ro Conc 1-3        | 16.9    | 0.16 | 1.00 | 33.4 | 0.46  | 1.58 | 85.1 | 2.6  | 14.5 | 33.5    | 2.6      | 10.1 | 37.0 |
|         | Po Ro Tails           | 61.0    | 0.02 | 0.16 | 5.86 | 0.04  | 0.17 | 15.0 | 0.9  | 8.4  | 21.1    | 0.9      | 4.0  | 23.5 |

Continued on next page ...

| Test    | Due du et             | 14/4 0/ |      |      | Assa | ys, % |      |      |      |      | Distribu | ution, % |      |      |
|---------|-----------------------|---------|------|------|------|-------|------|------|------|------|----------|----------|------|------|
| Test ID | Product               | WT %    | Cu   | Ni   | S    | Ср    | Pn   | Po   | Cu   | Ni   | S        | Ср       | Pn   | Po   |
|         | Cu/Ni 1st Cl Conc 1-4 | 7.3     | 13.1 | 9.87 | 34.5 | 38.0  | 27.0 | 32.0 | 94.2 | 61.0 | 15.3     | 94.2     | 72.4 | 6.2  |
|         | Cu/Ni Ro Conc 1-3     | 18.0    | 5.43 | 4.83 | 34.3 | 15.7  | 12.5 | 64.1 | 96.6 | 73.8 | 37.8     | 96.6     | 83.2 | 30.8 |
| F-9     | Po 1st CI Conc 1-3    | 5.2     | 0.34 | 1.89 | 35.0 | 0.99  | 4.05 | 86.7 | 1.8  | 8.4  | 11.2     | 1.8      | 7.8  | 12.1 |
|         | Po Ro Conc 1-3        | 18.5    | 0.17 | 1.05 | 32.5 | 0.49  | 1.76 | 82.5 | 3.1  | 16.5 | 36.7     | 3.1      | 12.0 | 40.6 |
|         | Po Ro Tails           | 63.5    | 0.01 | 0.18 | 6.59 | 0.01  | 0.21 | 16.9 | 0.3  | 9.7  | 25.5     | 0.3      | 4.8  | 28.6 |
|         | Cu/Ni 1st Cl Conc 1-4 | 11.4    | 8.36 | 6.71 | 35.2 | 24.2  | 17.9 | 53.9 | 94.8 | 66.8 | 24.9     | 94.8     | 77.6 | 16.7 |
|         | Cu/Ni Ro Conc 1-3     | 18.4    | 5.29 | 4.63 | 33.9 | 15.3  | 12.0 | 63.9 | 96.6 | 74.3 | 38.8     | 96.6     | 83.7 | 31.8 |
| F-10    | Po 1st Cl Conc 1-3    | 5.0     | 0.34 | 1.86 | 33.9 | 0.97  | 4.00 | 83.7 | 1.7  | 8.2  | 10.6     | 1.7      | 7.7  | 11.4 |
|         | Po Ro Conc 1-3        | 18.8    | 0.14 | 1.03 | 31.9 | 0.40  | 1.73 | 81.1 | 2.6  | 16.9 | 37.2     | 2.6      | 12.4 | 41.2 |
|         | Po Ro Tails           | 62.8    | 0.01 | 0.16 | 6.16 | 0.04  | 0.16 | 15.8 | 0.8  | 8.8  | 24.0     | 0.8      | 3.9  | 26.9 |
|         | Cu/Ni 3rd Cl Conc     | 3.8     | 22.1 | 9.51 | 33.4 | 64.1  | 26.3 | 5.9  | 84.2 | 32.1 | 7.9      | 84.2     | 38.9 | 0.6  |
|         | Cu/Ni 2nd Cl Conc     | 4.2     | 20.5 | 9.82 | 33.5 | 59.5  | 27.1 | 9.7  | 86.6 | 36.7 | 8.8      | 86.6     | 44.4 | 1.1  |
|         | Cu/Ni 1st Cl Conc     | 5.2     | 17.2 | 9.44 | 33.7 | 49.9  | 25.9 | 20.0 | 89.0 | 43.2 | 10.8     | 89.0     | 51.9 | 2.8  |
| F-11    | Cu/Ni Ro Conc 1-3     | 14.0    | 6.98 | 5.19 | 33.3 | 20.2  | 13.6 | 56.4 | 97.4 | 64.1 | 28.8     | 97.4     | 73.6 | 21.3 |
|         | Po 1st Cl Conc 1-3    | 3.0     | 0.32 | 2.23 | 33.5 | 0.92  | 5.05 | 81.8 | 1.0  | 6.0  | 6.3      | 1.0      | 5.9  | 6.7  |
|         | Po Ro Conc 1-3        | 13.7    | 0.16 | 1.45 | 33.3 | 0.48  | 2.87 | 83.5 | 2.2  | 17.5 | 28.0     | 2.2      | 15.1 | 30.6 |
|         | Po Ro Tails           | 72.3    | 0.01 | 0.29 | 9.68 | 0.01  | 0.41 | 24.8 | 0.4  | 18.5 | 43.2     | 0.4      | 11.4 | 48.1 |
|         | Cu/Ni 1st Cl Conc 1-4 | 14.8    | 6.61 | 5.82 | 36.0 | 19.1  | 15.3 | 62.9 | 94.8 | 74.0 | 32.4     | 94.8     | 84.8 | 24.7 |
|         | Cu/Ni Ro Conc 1-3     | 24.9    | 3.98 | 3.78 | 34.6 | 11.5  | 9.50 | 71.2 | 95.8 | 80.6 | 52.2     | 95.8     | 88.3 | 46.9 |
| F-12    | Po 3rd Cl Conc        | 1.1     | 0.84 | 3.14 | 37.0 | 2.43  | 7.51 | 87.5 | 0.9  | 3.0  | 2.5      | 0.9      | 3.1  | 2.6  |
|         | Po Ro Conc 1-3        | 15.8    | 0.18 | 0.91 | 30.9 | 0.52  | 1.41 | 78.7 | 2.8  | 12.3 | 29.8     | 2.8      | 8.4  | 33.0 |
|         | Po Ro Tails           | 59.3    | 0.03 | 0.14 | 5.00 | 0.07  | 0.15 | 12.8 | 1.4  | 7.1  | 18.0     | 1.4      | 3.3  | 20.1 |
|         | Cu/Ni 2nd Cl Conc 1   | 5.3     | 16.1 | 9.34 | 35.4 | 46.7  | 25.6 | 27.6 | 83.3 | 41.6 | 11.7     | 83.3     | 49.1 | 4.0  |
|         | Cu/Ni 1st Cl Conc 1-3 | 7.5     | 11.9 | 8.48 | 35.7 | 34.6  | 23.0 | 41.6 | 86.9 | 53.2 | 16.6     | 86.9     | 62.2 | 8.5  |
| F-23    | Cu/Ni Ro Conc 1-3     | 19.0    | 5.19 | 4.69 | 34.5 | 15.0  | 12.1 | 65.5 | 96.3 | 75.0 | 41.0     | 96.3     | 83.6 | 34.1 |
|         | Po 3rd Cl Conc        | 0.6     | 0.81 | 3.09 | 36.3 | 2.35  | 7.39 | 85.8 | 0.5  | 1.6  | 1.4      | 0.5      | 1.6  | 1.4  |
|         | Po Ro Conc 1-3        | 19.3    | 0.13 | 1.03 | 32.3 | 0.38  | 1.71 | 82.1 | 2.5  | 16.7 | 38.9     | 2.5      | 11.9 | 43.4 |
|         | Po Ro Tails           | 61.7    | 0.02 | 0.16 | 5.21 | 0.06  | 0.20 | 13.3 | 1.2  | 8.3  | 20.1     | 1.2      | 4.4  | 22.5 |

Table 15: Results Summary of Flotation Tests F-2, F-5 to F-12, and F-23 (Cont'd)



Figure 14: Effect of Na<sub>2</sub>SO<sub>3</sub> Alone on Pn Selectivity Against Po



Figure 15: Effect of Na<sub>2</sub>SO<sub>3</sub> and DETA Dosages on Pn Selectivity Against Po

## 4.2.3. Alternative Flowsheet Options

Three alternative flowsheet options were investigated in tests F-13, F-20, and F-39. Briefly the differences of these flowsheet are:

- F-13: Bulk Ro (Cu/Ni Ro + Po Ro) float, regrind, and cleaning stage, followed with Cleaner Tailings regrind and flotation
- F-20: Po Ro Conc and Cu/Ni CI Tails separate regrinds and flotation
- F-39: Regrind and flotation of Po Ro Conc + Cu/Ni Cl Tails together. A Po Rougher Scavenger was included with 50 g/t CuSO<sub>4</sub> and 30 g/t PAX.

The three flowsheets are depicted in Figure 16. The testing conditions and results are summarized in Table 16 and Table 17, respectively.

|         | F <sub>80</sub> (μm) | Cu/Ni Cleaners (& Scavenger) |            |             | Cu/Ni Tails Cleaners |             | Po Cleaners         |            |             |
|---------|----------------------|------------------------------|------------|-------------|----------------------|-------------|---------------------|------------|-------------|
| Test ID |                      | Regrind<br>P80 (µm)          | PAX<br>g/t | DETA<br>g/t | PAX<br>g/t           | DETA<br>g/t | Regrind<br>P80 (µm) | PAX<br>g/t | DETA<br>g/t |
| F-13    | 100                  | 33                           | 11         | 25          | -                    | -           | 21                  | 55         | 10          |
| F-20    | 150                  | 50*                          | 7          | 25          | 7                    | 55          | 127*                | 10         | 55          |
| F-39    | 100                  | 27                           | 7 (5)      | 25          | -                    | -           | 25                  | 7          | 0           |

| Table 16: Summary of Testing | Conditions of F-1 | 3, F-20, and F-39 |
|------------------------------|-------------------|-------------------|
|------------------------------|-------------------|-------------------|

<sup>\*</sup> S/A on CI Tails

The copper and nickel recoveries in the 1<sup>st</sup> cleaner concentrates of test F-13 were high, at 98% and 81%, respectively. However, too much pyrrhotite was floated, and the copper and nickel grades in the cleaner concentrates were low. It is possible that the target grades could be achieved with reasonably good recoveries with additional cleaning stages.

Test F-20 was tested with a coarser primary grind ( $F_{80} \sim 150 \mu m$ ). The nickel recovery in the Cu/Ni 1<sup>st</sup> Cleaner & Scavenger Concentrate was a lower at ~56% than a typical flotation test (F-9) using a 100 µm primary grind, ~61%. The nickel grade was similar, ~9.4% Ni in F-20 versus 9.9% Ni in F-9. Both the Cu/Ni Tails Recleaning and Po Cleaning recovered an additional 4-5% nickel. The nickel generated in the Cu/Ni Tails Recleaning stage was slightly higher grade than the Po cleaner circuit.

The flowsheet used in F-39 was adopted from the flowsheet developed for Selkirk Samples (reported separately). This test was performed after the locked cycle tests were completed. The results demonstrated a good potential with this flowsheet, as the Po circuit with the addition of Cu/Ni Cleaner Tails generated a nickel concentrate with reasonably good grade and recovery. The copper and nickel recoveries in the Cu/Ni cleaner circuit was low, at 88% and 50%, respectively. The reasons for this could be the low mass pull of Cu/Ni rougher stage, collector under-dosage, or insufficient residence time in the Cu/Ni cleaner stage.

The addition of Po Rougher Scavenger stage in test F-39 produced a low-sulphide final tailings, at 0.44% S.



Figure 16: Flowsheet of F-13, F-20, and F-39
| Test ID | Broduct                             | \A/+ 0/       |      |      | Assa | ys, % |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Distribu | ution, % | ,    |      |
|---------|-------------------------------------|---------------|------|------|------|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|------|------|
| Test ID | Floduct                             | <b>VVL</b> /0 | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Po         Cu         Ni         S         Cp         Pn           72.7         97.6         80.5         45.1         97.6         90.4           86.8         0.2         2.0         4.0         0.2         1.5           82.4         0.7         8.5         26.6         0.7         4.1           76.6         98.3         89.0         71.8         98.3         94.5           18.3         1.7         11.0         28.2         1.7         5.5           30.0         90.0         50.3         12.7         90.0         60.6           34.6         92.6         56.5         14.5         92.6         67.8           83.5         1.4         4.4         2.3         1.4         5.0           88.4         3.7         14.7         26.7         3.7         11.9           69.6         96.2         71.2         41.2         96.2         79.8           95.9         0.9         4.8         6.8         0.9         4.3           90.7         2.3         13.3         24.9         2.3         10.6           21.4         1.5         15.4         33.9         1.5 | Ро   |          |          |      |      |
|         | Cu/Ni 1st Cl Conc 1-4               | 20.5          | 4.90 | 4.46 | 36.7 | 14.2  | 11.4 | 72.7 | 97.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.5 | 45.1     | 97.6     | 90.4 | 38.8 |
|         | Po 1st Cl Conc 1                    | 1.9           | 0.11 | 1.16 | 34.2 | 0.32  | 2.01 | 86.8 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0  | 4.0      | 0.2      | 1.5  | 4.4  |
| F-13    | Cu/Ni 1st Cl Tails/Po Feed          | 13.8          | 0.05 | 0.69 | 32.0 | 0.15  | 0.77 | 82.4 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5  | 26.6     | 0.7      | 4.1  | 29.8 |
|         | Cu/Ni Ro Conc 1-3&Po Ro Conc 1-2    | 34.3          | 2.94 | 2.94 | 34.8 | 8.53  | 7.10 | 76.6 | 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.0 | 71.8     | 98.3     | 94.5 | 68.6 |
|         | Po Ro Tails                         | 65.7          | 0.03 | 0.19 | 7.16 | 0.08  | 0.21 | 18.3 | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.0 | 28.2     | 1.7      | 5.5  | 31.4 |
|         | Cu/Ni 1st Cl Conc                   | 6.1           | 15.0 | 9.58 | 35.4 | 43.5  | 26.2 | 30.0 | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.3 | 12.7     | 90.0     | 60.6 | 4.6  |
|         | Cu/Ni 1st Cl & Scav Conc            | 6.9           | 13.5 | 9.41 | 35.5 | 39.1  | 25.7 | 34.6 | 92.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56.5 | 14.5     | 92.6     | 67.8 | 6.1  |
|         | Cu/Ni Tails 2nd Cl Conc             | 1.0           | 1.42 | 5.01 | 37.8 | 4.12  | 12.8 | 83.5 | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4  | 2.3      | 1.4      | 5.0  | 2.2  |
| E 20    | Cu/Ni 1st Cl Tails                  | 12.9          | 0.29 | 1.32 | 35.1 | 0.83  | 2.43 | 88.4 | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.7 | 26.7     | 3.7      | 11.9 | 29.1 |
| F-20    | Cu/Ni Ro Conc 1-3                   | 19.8          | 4.91 | 4.15 | 35.3 | 14.2  | 10.6 | 69.6 | 96.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71.2 | 41.2     | 96.2     | 79.8 | 35.2 |
|         | Po 2nd Cl Conc                      | 3.0           | 0.32 | 1.84 | 38.5 | 0.93  | 3.78 | 95.9 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.8  | 6.8      | 0.9      | 4.3  | 7.3  |
|         | Po Ro Conc 1-3                      | 11.8          | 0.19 | 1.30 | 35.9 | 0.56  | 2.36 | 90.7 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.3 | 24.9     | 2.3      | 10.6 | 27.3 |
|         | Po Ro Tails                         | 68.4          | 0.02 | 0.26 | 8.39 | 0.06  | 0.37 | 21.4 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.4 | 33.9     | 1.5      | 9.6  | 37.5 |
|         | Cu/Ni 1st Cl & Scav Conc            | 5.6           | 15.2 | 10.5 | 33.8 | 44.1  | 28.9 | 23.0 | 87.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.3 | 11.8     | 87.6     | 60.0 | 3.5  |
|         | Po 3rd Cl Conc                      | 1.1           | 1.84 | 7.64 | 36.8 | 5.33  | 20.2 | 73.4 | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.2  | 2.5      | 2.1      | 8.2  | 2.2  |
| F-39    | Cu/Ni 1st Cl Tails & Po Ro Conc 1-3 | 38.5          | 0.29 | 1.38 | 33.7 | 0.83  | 2.65 | 84.5 | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.4 | 80.7     | 11.3     | 37.8 | 88.2 |
|         | Cu/Ni Ro Conc 1-3 & Po Ro Conc      | 44.1          | 2.18 | 2.54 | 33.7 | 6.32  | 5.98 | 76.7 | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.7 | 92.4     | 98.9     | 97.9 | 91.7 |
|         | F39 Po Ro Scav Tails                | 52.8          | 0.01 | 0.05 | 0.44 | 0.04  | 0.06 | 1.05 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4  | 1.4      | 0.8      | 1.2  | 1.5  |

Table 17: Results Summary of Flotation Tests F-13, F-20, and F-39.

#### 4.2.4. Cu-Ni Separation

Two flotation tests (F-16 and F-19) were performed to evaluate the copper and nickel separation efficiency, by depressing nickel at high pH (>11.5). The summary of Cu-Ni separation testing conditions and flotation test results are shown in Table 18 and Table 19, respectively.

Based on F-9, test F-16 included an aeration stage for 10 minutes prior to the flotation. Lime was added to target pH 11.5. The copper - nickel separation was poor, with too much pentlandite lost to the copper concentrate. About 9% of the available pentlandite was lost to the Cu 3<sup>rd</sup> Cleaner Concentrate at a grade of 2% Ni.

In test F-19, a polish grind using a pebble mill and a high lime dosage (500 g/t) was applied. The nickel was well-depressed, producing a copper concentrate with <1% Ni (0.4% to be exact) with <1% pentlandite distributed to the final copper concentrate. The copper final recovery was low (54%), but may be improved with additional collector. The nickel grade of nickel concentrate (Cu Rougher Scavenger Tails) was on-spec, >10% Ni.

|         |                 | C                      | u - Ni Separation                        |            |      |
|---------|-----------------|------------------------|------------------------------------------|------------|------|
| Test ID | Polish<br>Grind | Aeration/<br>Cond, min | Lime in<br>Grind/Initial<br>Float<br>g/t | PAX<br>g/t | рН   |
| F-16    | No              | 10                     | 165                                      | 1          | 11.5 |
| F-19    | Yes             | 0                      | 500                                      | 1          | 11.5 |

Table 18: Summary of Testing Conditions for F-16 and F-19

| Tost ID | Product           | \A/+ 0/       |      |       | Assa | ys, % |      |      |      | Ove  | rall Dist | tributio | n, % |     | Stage | Recove | ery, % |
|---------|-------------------|---------------|------|-------|------|-------|------|------|------|------|-----------|----------|------|-----|-------|--------|--------|
| Test ID | Product           | <b>VVL</b> 70 | Cu   | Ni    | S    | Ср    | Pn   | Ро   | Cu   | Ni   | s         | Ср       | Pn   | Ро  | Ср    | Pn     | Ро     |
|         | Cu 3rd Cl Conc    | 2.4           | 28.8 | 2.13  | 35.1 | 83.5  | 5.8  | 10.3 | 68.8 | 4.4  | 5.3       | 68.8     | 5.2  | 0.7 | 76.9  | 8.7    | 44.2   |
|         | Cu 2nd Cl Conc    | 2.9           | 26.2 | 4.09  | 34.8 | 76.0  | 11.2 | 11.6 | 75.2 | 10.2 | 6.3       | 75.2     | 12.2 | 0.9 | 84.1  | 19.9   | 52.6   |
|         | Cu 1st Cl Conc    | 3.6           | 23.0 | 6.77  | 34.5 | 66.5  | 18.6 | 13.0 | 81.8 | 21.0 | 7.7       | 81.8     | 25.2 | 1.3 | 91.5  | 41.0   | 64.8   |
| F-16    | Cu Ro Conc        | 4.4           | 19.3 | 9.47  | 34.3 | 56.1  | 26.1 | 15.6 | 84.8 | 36.2 | 9.5       | 84.8     | 43.3 | 1.9 | 94.8  | 70.6   | 79.2   |
|         | Cu Ro & Scav Conc | 5.1           | 17.7 | 10.4  | 34.3 | 51.2  | 28.7 | 18.0 | 88.9 | 45.7 | 10.9      | 88.9     | 54.7 | 2.5 | 99.4  | 89.2   | 91.1   |
|         | Cu Ro Scav Tails  | 0.5           | 1.01 | 12.4  | 32.9 | 2.93  | 33.7 | 53.9 | 0.5  | 5.5  | 1.1       | 0.5      | 6.5  | 0.8 |       |        |        |
|         | Cu/Ni 2nd Cl Conc | 5.6           | 16.1 | 10.61 | 34.2 | 46.8  | 29.2 | 21.3 | 89.4 | 51.3 | 12.0      | 89.4     | 61.3 | 3.3 |       |        |        |
|         | Cu 3rd Cl Conc    | 1.6           | 33.8 | 0.42  | 35.1 | 98.0  | 1.15 | 1.12 | 54.2 | 0.6  | 3.4       | 54.2     | 0.7  | 0.0 | 58.4  | 0.9    | 20.2   |
|         | Cu 2nd Cl Conc    | 1.9           | 32.8 | 0.68  | 34.7 | 95.2  | 1.86 | 2.11 | 61.7 | 1.1  | 3.9       | 61.7     | 1.3  | 0.1 | 66.5  | 1.8    | 23.4   |
|         | Cu 1st Cl Conc    | 2.2           | 30.8 | 1.34  | 34.2 | 89.2  | 3.67 | 4.58 | 65.8 | 2.4  | 4.4       | 65.8     | 2.9  | 0.3 | 70.9  | 4.0    | 26.3   |
| F-19    | Cu Ro Conc        | 2.6           | 27.1 | 3.37  | 33.9 | 78.6  | 9.25 | 8.67 | 70.9 | 7.5  | 5.4       | 70.9     | 8.9  | 0.6 | 76.4  | 12.3   | 31.8   |
|         | Cu Ro & Scav Conc | 3.5           | 23.8 | 5.46  | 34.0 | 69.0  | 15.0 | 12.7 | 83.0 | 16.2 | 7.2       | 83.0     | 19.3 | 1.2 | 89.5  | 26.4   | 42.6   |
|         | Cu Ro Scav Tails  | 4.6           | 2.12 | 11.5  | 34.7 | 6.14  | 31.1 | 57.9 | 9.8  | 44.9 | 9.7       | 9.8      | 53.0 | 7.0 |       |        |        |
|         | Cu/Ni 1st Cl Conc | 8.2           | 11.5 | 8.90  | 34.4 | 33.2  | 24.2 | 38.4 | 92.8 | 61.1 | 16.8      | 92.8     | 72.3 | 8.2 |       |        |        |

Table 19: Results Summary of Tests F-16 and F-19

#### 4.3. Flowsheet Evaluation with P and S Comp

Three flotation tests were performed on the S Comp and four tests on the P Comp, to evaluate the response to the flowsheet developed for the SN Comp (F-9, F-19). A summary of testing conditions is presented in Table 20 and results are presented in Table 21 and Table 22.

Below summarized the key findings from these tests:

S Comp:

- The rougher kinetics test (F-14) was similar to that of SN Comp, with a bit higher nickel recovery (84%). The coarse primary grind at a F<sub>80</sub> of 150 µm was appropriate for the S Comp.
- Test F-17 evaluated the flowsheet similar to test F-9. The nickel recovery in the Cu/Ni 1<sup>st</sup> Cleaner Concentrate was good, at 71%, with a grade of 5.4% Ni.
- The Cu-Ni separation was successfully demonstrated in test F-21. A high-grade copper concentrate (33% Cu) with low nickel content (0.2% Ni) was produced. An on-spec nickel concentrate was produced as well, at 12.5% Ni. The copper recovery was lower than expected, but might be improved with slightly more collector.

P Comp:

- The rougher kinetics test (F-15) was similar to that of SN Comp, with a bit lower nickel recovery (67%).
- The nickel recovery of the Cu/Ni 1<sup>st</sup> Cleaner Concentrate in the standard flowsheet evaluation (test F-18) was slightly low, at 57%.
- The Cu-Ni separation was successfully demonstrated in test F-22. Both the copper concentrate and nickel concentrate were on-spec. The nickel recovery was low, and could benefit from slightly higher collector dosages in the Cu/Ni cleaner circuit.
- The nickel recovery in the Po circuit could be further improved, as shown in test F-37 with the alternative flowsheet (similar to F-39), ~8% nickel recovery at a grade of 3.4% Ni.

| Table 20: Summary of Testing Conditions | of F-14, F-15, F-17, F-18, F-21, F-22, and F-37. |
|-----------------------------------------|--------------------------------------------------|
|-----------------------------------------|--------------------------------------------------|

|         |           |                      | Cu/Ni Ro   | Po Ro      | Cu/N                    | i CI (& S  | Scav)       | Cu/Ni<br>Tails ReCl | Ро                      | Cleane     | rs          | Cı                      | ı - Ni Sep              | aratior    | 1    |
|---------|-----------|----------------------|------------|------------|-------------------------|------------|-------------|---------------------|-------------------------|------------|-------------|-------------------------|-------------------------|------------|------|
| Test ID | Sample ID | F <sub>80</sub> (μm) | PAX<br>g/t | PAX<br>g/t | Ρ <sub>80</sub><br>(μm) | PAX<br>g/t | DETA<br>g/t | PAX<br>g/t          | Ρ <sub>80</sub><br>(μm) | PAX<br>g/t | DETA<br>g/t | Polish<br>Grind,<br>min | Lime in<br>Grind<br>g/t | PAX<br>g/t | рН   |
| F-14    | S Comp    | 142                  | 15         | 30         | -                       | -          | -           | -                   | -                       | -          | -           | -                       | -                       | 1          | 11.5 |
| F-17    | S Comp    | 158                  | 17.5       | 30         | 51*                     | 6          | 25          | -                   | 50*                     | 5          | 30          | -                       | -                       | 1          | 11.5 |
| F-21    | S Comp    | 158                  | 17.5       | 30         | -                       | 7          | 25          | 12                  | -                       | 10         | 30          | 7                       | 900                     | 2          | 11.6 |
| F-15    | P Comp    | 147                  | 15         | 60         | -                       | -          | -           | -                   | -                       | -          | -           | -                       | -                       | -          | -    |
| F-18    | P Comp    | 98                   | 15         | 30         | 41*                     | 6          | 25          | -                   | 42*                     | 5          | 30          | -                       | -                       | -          | -    |
| F-22    | P Comp    | 147                  | 15         | 30         | 38*                     | 8          | 25          | 13                  | 40*                     | 6          | 25          | 10                      | 350                     | 1          | 11.7 |
| F-37    | P Comp    | 98                   | 20         | 60         | 26                      | 7 (7)      | 25          | -                   | 36                      | 4          | 0           | -                       | -                       | -          | -    |

\* S/A on CI Tails

#### Table 21: Results Summary of Tests F-14, F-17, and F-21 (S Comp)

| Tost ID | Product                 | \ <b>\/</b> + % |      |      | Assa | ys, % |      |      |      |      | Distribu | ution, % | ,<br>D | -    |
|---------|-------------------------|-----------------|------|------|------|-------|------|------|------|------|----------|----------|--------|------|
| Test ID | FIGUUGI                 | <b>VVL</b> /0   | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Cu   | Ni   | s        | Ср       | Pn     | Po   |
|         | Cu/Ni Ro Conc 1-3       | 22.7            | 8.18 | 3.29 | 33.6 | 23.7  | 8.33 | 58.6 | 97.8 | 83.6 | 63.7     | 97.8     | 90.1   | 54.7 |
| F-14    | Po Ro Conc 1-3          | 9.5             | 0.35 | 0.97 | 32.8 | 1.00  | 1.52 | 83.0 | 1.7  | 10.3 | 26.1     | 1.7      | 6.9    | 32.6 |
|         | Po Ro Tails             | 67.8            | 0.01 | 0.08 | 1.80 | 0.04  | 0.09 | 4.6  | 0.5  | 6.1  | 10.2     | 0.5      | 3.0    | 12.7 |
|         | Cu/Ni 1st Cl Conc 1-3   | 11.9            | 15.9 | 5.38 | 35.3 | 46.2  | 14.4 | 37.2 | 96.5 | 70.5 | 35.6     | 96.5     | 80.0   | 18.8 |
|         | Cu/Ni 1st Cl Conc 1-4   | 15.3            | 12.5 | 4.53 | 35.9 | 36.1  | 11.9 | 50.1 | 97.2 | 76.4 | 46.6     | 97.2     | 84.9   | 32.5 |
| E 17    | Cu/Ni Ro Conc 1-3       | 23.5            | 8.19 | 3.26 | 33.6 | 23.7  | 8.23 | 58.7 | 97.9 | 84.2 | 66.9     | 97.9     | 90.0   | 58.4 |
| F-1/    | Po 1st Cl Conc 1-3      | 4.2             | 0.35 | 1.24 | 36.8 | 1.01  | 2.16 | 92.9 | 0.7  | 5.7  | 13.1     | 0.7      | 4.2    | 16.5 |
|         | Po Ro Conc 1-3          | 8.9             | 0.27 | 0.99 | 32.5 | 0.78  | 1.59 | 82.2 | 1.2  | 9.7  | 24.6     | 1.2      | 6.6    | 31.1 |
|         | Po Ro Tails             | 67.6            | 0.03 | 0.08 | 1.48 | 0.08  | 0.11 | 3.68 | 0.9  | 6.1  | 8.5      | 0.9      | 3.4    | 10.6 |
|         | Cu 3rd Cl Conc          | 3.2             | 33.0 | 0.22 | 35.0 | 95.7  | 0.56 | 3.47 | 55.5 | 0.8  | 9.7      | 55.5     | 0.9    | 0.5  |
|         | Cu Ro Scav Tails        | 3.8             | 7.48 | 12.5 | 34.1 | 21.7  | 34.2 | 39.6 | 14.8 | 53.5 | 11.1     | 14.8     | 62.2   | 6.4  |
|         | Cu/Ni 2nd Cl Conc       | 9.4             | 19.3 | 5.86 | 34.4 | 56.0  | 15.9 | 24.9 | 95.4 | 62.6 | 27.9     | 95.4     | 72.4   | 10.0 |
| E 21    | Cu/Ni Ro Conc 1-3       | 25.0            | 7.49 | 3.05 | 33.0 | 21.7  | 7.64 | 59.5 | 98.2 | 86.4 | 71.0     | 98.2     | 92.0   | 63.6 |
| F-21    | Cu/Ni Tails 1st Cl Conc | 4.8             | 0.19 | 1.10 | 37.7 | 0.55  | 1.72 | 95.9 | 0.5  | 5.9  | 15.5     | 0.5      | 4.0    | 19.6 |
|         | Po 3rd Cl Conc          | 0.5             | 0.23 | 1.51 | 38.8 | 0.67  | 2.84 | 97.7 | 0.1  | 0.9  | 1.8      | 0.1      | 0.7    | 2.3  |
|         | Po Ro Conc 1-3          | 7.0             | 0.24 | 0.93 | 32.0 | 0.70  | 1.45 | 81.3 | 0.9  | 7.4  | 19.4     | 0.9      | 4.9    | 24.5 |
|         | Po Ro Tails             | 67.9            | 0.03 | 0.08 | 1.65 | 0.08  | 0.10 | 4.13 | 1.0  | 6.2  | 9.6      | 1.0      | 3.1    | 12.0 |
|         | Head (Dir.)             |                 | 1.90 | 0.88 | 11.9 | 5.51  | 2.06 | 24.1 |      |      |          |          |        |      |

| Test    | Duradurat                | 14/4 0/ |      |      | Assa | ys, % |      |      |      |      | Distribu | ution, % | )    |      |
|---------|--------------------------|---------|------|------|------|-------|------|------|------|------|----------|----------|------|------|
| Test ID | Product                  | WVI %   | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Cu   | Ni   | S        | Ср       | Pn   | Ро   |
|         | Cu/Ni Ro Conc 1-3        | 12.5    | 3.12 | 4.19 | 32.3 | 9.05  | 10.7 | 66.4 | 94.9 | 66.7 | 37.8     | 94.9     | 75.2 | 33.0 |
| F-15    | Po Ro Conc 1-3           | 13.5    | 0.08 | 1.07 | 32.4 | 0.24  | 1.80 | 82.4 | 2.7  | 18.2 | 40.8     | 2.7      | 13.6 | 44.1 |
|         | Po Ro Tails              | 74.0    | 0.01 | 0.16 | 3.09 | 0.04  | 0.27 | 7.76 | 2.3  | 15.1 | 21.4     | 2.3      | 11.2 | 22.9 |
|         | Cu/Ni 1st Cl Conc 1-4    | 4.6     | 7.74 | 9.71 | 36.5 | 22.4  | 26.2 | 52.0 | 86.3 | 56.5 | 16.3     | 86.3     | 66.8 | 9.9  |
|         | Cu/Ni Ro Conc 1-3        | 12.0    | 3.18 | 4.56 | 33.3 | 9.21  | 11.7 | 68.1 | 91.6 | 68.6 | 38.4     | 91.6     | 77.1 | 33.6 |
| F-18    | Po 1st Cl Conc 1-3       | 3.7     | 0.39 | 1.93 | 35.6 | 1.13  | 4.13 | 87.9 | 3.5  | 8.9  | 12.6     | 3.5      | 8.4  | 13.3 |
|         | Po Ro Conc 1-3           | 12.6    | 0.15 | 1.08 | 31.8 | 0.44  | 1.87 | 80.7 | 4.6  | 17.1 | 38.8     | 4.6      | 13.0 | 42.0 |
|         | Po Ro Tails              | 75.4    | 0.02 | 0.15 | 3.14 | 0.06  | 0.24 | 7.89 | 3.8  | 14.2 | 22.8     | 3.8      | 10.0 | 24.5 |
|         | Cu 2nd Cl Conc           | 0.3     | 32.2 | 0.17 | 33.7 | 93.3  | 0.44 | 2.31 | 21.5 | 0.1  | 0.9      | 21.5     | 0.1  | 0.03 |
|         | Cu Ro Scav Tails         | 1.7     | 3.18 | 16.3 | 39.2 | 9.22  | 44.5 | 55.3 | 12.5 | 35.2 | 6.0      | 12.5     | 42.6 | 3.6  |
|         | Cu/Ni 2nd Cl Conc        | 2.7     | 12.6 | 11.0 | 37.1 | 36.6  | 30.1 | 37.3 | 81.7 | 39.2 | 9.4      | 81.7     | 47.5 | 4.0  |
| E 22    | Cu/Ni Ro Conc 1-3        | 11.7    | 3.33 | 4.19 | 31.9 | 9.64  | 10.7 | 65.0 | 92.0 | 63.6 | 34.7     | 92.0     | 72.3 | 30.0 |
| F-22    | Cu/Ni Tails 1st Cl Conc  | 1.2     | 0.69 | 3.36 | 42.2 | 2.00  | 7.94 | 101  | 2.0  | 5.4  | 4.8      | 2.0      | 5.6  | 4.9  |
|         | Po 3rd Cl Conc           | 0.6     | 0.73 | 4.01 | 43.8 | 2.12  | 9.71 | 104  | 1.0  | 3.1  | 2.5      | 1.0      | 3.4  | 2.5  |
|         | Po Ro Conc 1-3           | 12.5    | 0.13 | 1.15 | 30.7 | 0.37  | 2.11 | 77.5 | 3.7  | 18.7 | 35.6     | 3.7      | 15.2 | 38.2 |
|         | Po Ro Tails              | 75.7    | 0.02 | 0.18 | 4.25 | 0.07  | 0.29 | 10.7 | 4.3  | 17.6 | 29.8     | 4.3      | 12.5 | 31.9 |
|         | Cu/Ni 1st Cl Conc 1-2    | 2.7     | 12.2 | 11.8 | 36.6 | 35.5  | 32.4 | 35.1 | 80.3 | 41.7 | 9.7      | 80.3     | 50.3 | 3.9  |
|         | Cu/Ni 1st Cl & Scav Conc | 3.6     | 9.63 | 11.1 | 37.5 | 27.9  | 30.1 | 46.2 | 85.1 | 52.6 | 13.3     | 85.1     | 63.0 | 7.0  |
| E 27    | Po 2nd Cl Conc           | 1.9     | 0.93 | 3.38 | 45.9 | 2.70  | 7.88 | 110  | 4.3  | 8.4  | 8.5      | 4.3      | 8.6  | 8.7  |
| F-37    | Cu/Ni 1st Cl Tails & Po  | 24.5    | 0 10 | 1 15 | 32.6 | 0.55  | 2.04 | 82.5 | 11 / | 37.2 | 70.0     | 11 /     | 20.0 | 85.1 |
|         | Ro Conc 1-3              | 24.5    | 0.13 | 1.15 | 52.0 | 0.55  | 2.04 | 02.5 | 11.4 | 57.2 | 79.0     | 11.4     | 29.0 | 05.1 |
|         | Po Ro Scav Tails         | 69.7    | 0.02 | 0.08 | 0.21 | 0.05  | 0.15 | 0.37 | 3.1  | 7.6  | 1.4      | 3.1      | 6.2  | 1.1  |
|         | Head (Dir.)              |         | 0.42 | 0.79 | 10.4 | 1.22  | 1.80 | 24.4 |      |      |          |          |      |      |

Table 22: Results Summary of Tests F-15, F-18, F-22, and F-37 (P Comp)

#### 4.4. Locked Cycle Testing

A total of three locked cycle tests (LCT) were completed. Two locked cycle tests (LCT-1, LCT-2) with six cycles each were completed on 2 kg test charges of the SN Comp sample included the Cu/Ni Roughers, Po Roughers, Cu/Ni Cleaners, and Po Cleaners stages. The flowsheet for both LCTs was based on test F-19, with the inclusion of a Cu/Ni Scalp stage after the Scavenger. The Cu/Ni Scalp Concentrate was combined with Po Rougher Concentrate for regrind and cleaning. The flowsheet differences of the two LCTs are:

- LCT-1 and LCT-2 targeted a F<sub>80</sub> of 150 μm and 100 μm, respectively
- LCT-1 included a 2<sup>nd</sup> Cu/Ni cleaner, with the Cu/Ni 2<sup>nd</sup> cleaner tailings recirculated back to the 1<sup>st</sup> cleaner feed in the subsequent cycle. Only one Cu/Ni cleaning stage was included in LCT-2, to maximize the nickel recovery.

The Cu/Ni Cleaner Concentrate produced in cycle A of LCT-1 / LCT-2 was filtered and the total wet weight was recorded. The sample was dried in an oven and the total dry weight recorded and subsampled for assay. The Cu/Ni Cleaner Concentrates from the subsequent cycles were each filtered, the total wet weight recorded, and then subsampled for assay. The remaining wet samples were repulped and stored in a refrigerator.

The combined pulp from the Cu/Ni cleaner concentrates produced from the same LCT was then filtered, blended, and split into equal charge weights of ~200 g dry equivalent as feed for LCT-3 testing. The

moisture content of the filter cake of Cu/Ni Cleaner Concentrate Cycle A was used to estimate the dry weights of Cu/Ni Cleaner Concentrate from Cycle B to Cycle F.

The Cu-Ni separation locked cycle test (LCT-3) with seven cycles was performed on the Cu/Ni cleaner concentrates produced from the first two LCTs, based on the conditions of test F-19. LCT-3 Cycle A to D used Cu/Ni concentrate produced from LCT-2 (cycles B-F), and Cycle E to G used Cu/Ni concentrate produced from LCT-1 (cycles B-F). Details of the feed makeup for LCT-3 each cycle are illustrated in Table 23.

| LCT-3 Cycle A to I          | )                     | LCT-3 Cycle E to G          |                       |
|-----------------------------|-----------------------|-----------------------------|-----------------------|
| Product ID                  | Est. Dry<br>Weight, g | Product ID                  | Est. Dry<br>Weight, g |
| LCT-2 Cu/Ni 1st Cl Conc - B | 152                   | LCT-1 Cu/Ni 2nd Cl Conc - B | 131                   |
| LCT-2 Cu/Ni 1st Cl Conc - C | 130                   | LCT-1 Cu/Ni 2nd Cl Conc - C | 128                   |
| LCT-2 Cu/Ni 1st Cl Conc - D | 170                   | LCT-1 Cu/Ni 2nd Cl Conc - D | 121                   |
| LCT-2 Cu/Ni 1st Cl Conc - E | 176                   | LCT-1 Cu/Ni 2nd Cl Conc - E | 127                   |
| LCT-2 Cu/Ni 1st Cl Conc - F | 198                   | LCT-1 Cu/Ni 2nd Cl Conc - F | 135                   |
| LCT-2 B-F Total             | 828                   | LCT-1 B-F Total             | 642                   |
| Split to 4 charges          |                       | Split to 3 charges          |                       |

Table 23: The Feed Makeup of LCT-3 Each Cycle

The flowsheets of LCT-2 and LCT-3 are illustrated in Figure 17 and Figure 18.

Details of the LCT-1, LCT-2, and LCT-3 test conditions and test results are provided in Appendix D.

#### 4.4.1. LCT-1 and LCT-2 Test Results

A stability check was performed for each locked cycle tests based on the metal units in the exit streams of each cycle as a percentage of the units in the feed to each cycle. The stability of both LCTs was reasonable. Slight variation was observed in the last 1-2 cycles of the tests when additional amounts of PAX were introduced to the cleaner stages to improve the metal recoveries. Following a statistical analysis, cycles B to F for LCT-1 and Cycles D to F for LCT-2, were deemed to be suitable for projected mass balance calculations, to simulate the metallurgical performance that would be achieved in a continuous operation. This is presented in Table 24 and Table 25.

In LCT-1, the projected Cu/Ni 2<sup>nd</sup> cleaner concentrate graded >20% Cu+Ni, with 94% copper recovery and 55% nickel recovery. The nickel recovery was low compared to typical batch flotation tests.

The nickel recovery to the Po 3<sup>rd</sup> cleaner concentrate was 8%, with a reasonably good grade, at 5.5% Ni. Both the grade and recovery to this stage were much higher than what was typically observed in the batch

flotation tests, likely due to the displaced nickel from the bulk circuit. The inclusion of the Cu/Ni Scalp Concentrate in the Po Cleaner circuit might contribute to this.

The combined Cu/Ni 2<sup>nd</sup> Cleaner Concentrate and the Po 3<sup>rd</sup> cleaner concentrate accounted for 96% copper and 63% nickel recoveries, grading at ~20% Cu+Ni.

In LCT-2, with only one Cu/Ni cleaner stage, the Cu+Ni grade was still reasonable at ~19% Cu+Ni, at an improved nickel recovery of 64%. The nickel recovery to the Po 3<sup>rd</sup> cleaner concentrate was 5% at a grade of 7% Ni. There may be room to recover a bit more nickel in the Po cleaner stage with a bit more collector. The nickel recovery of the combined Cu/Ni 1<sup>st</sup> Cleaner Concentrate and the Po 3<sup>rd</sup> Cleaner Concentrate was 68%.



Figure 17: Flowsheet of LCT-2



#### Figure 18: Flowsheet of LCT-3

| Product           | Wt   |      |      | Assa | ys, % |      |      |      | 9    | ∕₀ Distr | ibutio | n    |      |
|-------------------|------|------|------|------|-------|------|------|------|------|----------|--------|------|------|
| FIGUUCI           | %    | Cu   | Ni   | S    | Ср    | Pn   | Po   | Cu   | Ni   | S        | Ср     | Pn   | Ро   |
| Cu/Ni 2nd Cl Conc | 6.7  | 14.2 | 9.43 | 34.4 | 41.2  | 25.8 | 29.9 | 94.3 | 55.3 | 14.4     | 94.3   | 65.8 | 5.5  |
| Cu/Ni Scalp Tail  | 11.7 | 0.16 | 1.07 | 32.8 | 0.47  | 1.80 | 83.3 | 1.9  | 11.0 | 24.2     | 1.9    | 8.1  | 26.8 |
| Po 3rd Cl Conc    | 1.7  | 0.78 | 5.54 | 37.1 | 2.27  | 14.2 | 82.1 | 1.3  | 8.1  | 3.9      | 1.3    | 9.1  | 3.8  |
| Comb. Cu/Ni Conc  | 8.3  | 11.5 | 8.65 | 35.0 | 33.4  | 23.5 | 40.3 | 95.6 | 63.4 | 18.3     | 95.6   | 74.9 | 9.2  |
| Po 1st Cl Tails   | 22.2 | 0.09 | 1.02 | 33.6 | 0.26  | 1.62 | 85.7 | 2.0  | 19.9 | 47.0     | 2.0    | 13.8 | 52.3 |
| Po Rougher Tail   | 57.8 | 0.01 | 0.11 | 2.90 | 0.03  | 0.14 | 7.37 | 0.6  | 5.8  | 10.5     | 0.6    | 3.2  | 11.7 |
| Head (Calc.)      | 100  | 1.00 | 1.14 | 15.9 | 2.91  | 2.61 | 36.4 | 100  | 100  | 100      | 100    | 100  | 100  |
| Head (Dir.)       |      | 1.07 | 1.17 | 16.5 | 3.10  | 2.69 | 37.7 |      |      |          |        |      |      |

#### Table 24: LCT-1 Metallurgical Projection (B-F)

#### Table 25: LCT-2 Metallurgical Projection (D-F)

| Product           | Wt   |      |      | Assa | ys, % |      |      |      |      | % Distr | ibution |      |      |
|-------------------|------|------|------|------|-------|------|------|------|------|---------|---------|------|------|
| FIGUUCI           | %    | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Cu   | Ni   | S       | Ср      | Pn   | Ро   |
| Cu/Ni 1st Cl Conc | 9.5  | 10.8 | 8.27 | 35.3 | 31.4  | 22.4 | 44.1 | 93.4 | 63.6 | 20.5    | 93.4    | 73.9 | 11.3 |
| Cu/Ni Scalp Tail  | 7.5  | 0.16 | 0.86 | 33.8 | 0.46  | 1.17 | 86.3 | 1.1  | 5.2  | 15.6    | 1.1     | 3.1  | 17.6 |
| Po 3rd Cl Conc    | 0.8  | 1.66 | 7.02 | 36.3 | 4.80  | 18.5 | 74.1 | 1.3  | 4.8  | 1.9     | 1.3     | 5.4  | 1.7  |
| Comb. Cu/Ni Conc  | 10.3 | 10.1 | 8.17 | 35.4 | 29.2  | 22.0 | 46.5 | 94.7 | 68.4 | 22.4    | 94.7    | 79.3 | 12.9 |
| Po 1st Cl Tails   | 23.7 | 0.18 | 1.12 | 34.5 | 0.51  | 1.89 | 87.5 | 3.8  | 21.6 | 50.2    | 3.8     | 15.6 | 56.1 |
| Po Rougher Tail   | 58.5 | 0.01 | 0.10 | 3.29 | 0.02  | 0.10 | 8.45 | 0.4  | 4.8  | 11.8    | 0.4     | 2.0  | 13.4 |
| Head (Calc.)      | 100  | 1.10 | 1.23 | 16.3 | 3.18  | 2.86 | 36.9 | 100  | 100  | 100     | 100     | 100  | 100  |
| Head (Dir.)       |      | 1.07 | 1.17 | 16.5 | 3.10  | 2.69 | 37.7 |      |      |         |         |      |      |

#### 4.4.2. LCT-3 Test Results

The metallurgical balance of LCT-3 is presented in Table 26. Since the test charges for cycles A to D and cycles E to G contained different feeds (and grades), the stability check and metallurgical projection for each half of the LCT were analyzed separately. The stability analysis for cycle A through D was poor, as the locked cycle test typically requires 3-4 cycles to stabilize. Intermediate streams of Cycle D in LCT-3 were re-circulated to cycle E. Cycle D was chosen for the metallurgical projection to represent the Cu-Ni separation performance of the Cu/Ni concentrates produced from LCT-2. The projected metallurgical results are presented in Table 27.

For the test on cycle A to D, the projected metallurgical results showed the stage recovery of copper to the copper concentrate was 79% at a grade of 29% Cu, with an additional 21% stage recovered to the nickel concentrate. The nickel stage recovery to the nickel concentrate (Cu Rougher Scavenger Tails) was 93% at a grade of 11%Ni.

Following a statistical analysis, cycles F to G was deemed to be suitable for projected mass balance calculations for the test on cycle E to G. The projected metallurgical results are presented in Table 28.

For the test on cycle E to G, the projected metallurgical results showed the stage recovery of copper to the copper concentrate was 84% at a grade of 31% Cu, with an additional 16% stage recovered to the nickel concentrate. The nickel stage recovery to the nickel concentrate (Cu Rougher Scavenger Tails) was 98% at a grade of 15%Ni.

The nickel content in the Cu  $3^{rd}$  Cleaner Concentrate of cycle B to D was >1% Ni. However, the % Ni in the Cu  $3^{rd}$  Cleaner Concentrate of Cycle A was <1% Ni. A higher dosage of lime might be required in the regrind or the beginning of the copper rougher flotation to compensate for the extra mass of the re-circulated stream. Another possibility is that the PAX dosage in the copper rougher and rougher scavenger (1 g/t + 1 g/t) might be a bit too high in Cycle B to C, causing nickel losses to the copper concentrate.

Starting cycle D, the PAX dosage was reduced by half (0.5 g/t + 0.5 g/t) as well a higher dosage of lime was added to the pebble mill (750 g/t versus 625 g/t in cycle A to C). Despite this change, the nickel content in the final copper concentrate in cycle D was still >1% Ni. The recirculation streams may still contain a relatively high amount of residual PAX in cycle D. In cycle E to G, the % Ni in the Cu  $3^{rd}$  Cleaner Concentrate were all well below 1% Ni.

| Product                 | Wt   |      |      | Assa | ys, % |      |      |      |      | % Distribution       Ni     S     Cp     Pn     Po       3     2.7     6.8     0.3     0.2 |      |      |      |  |
|-------------------------|------|------|------|------|-------|------|------|------|------|--------------------------------------------------------------------------------------------|------|------|------|--|
| Froduct                 | %    | Cu   | Ni   | S    | Ср    | Pn   | Po   | Cu   | Ni   | S                                                                                          | Ср   | Pn   | Ро   |  |
| LCT-3 Cu 3rd Cl Conc-A  | 2.6  | 32.0 | 0.89 | 34.1 | 92.8  | 2.4  | 2.2  | 6.8  | 0.3  | 2.7                                                                                        | 6.8  | 0.3  | 0.2  |  |
| LCT-3 Cu 3rd Cl Conc-B  | 4.5  | 29.8 | 1.86 | 34.1 | 86.4  | 5.1  | 5.7  | 10.7 | 1.0  | 4.5                                                                                        | 10.7 | 1.0  | 0.7  |  |
| LCT-3 Cu 3rd Cl Conc-C  | 5.3  | 28.4 | 2.40 | 34.7 | 82.3  | 6.5  | 9.7  | 12.0 | 1.5  | 5.4                                                                                        | 12.0 | 1.5  | 1.5  |  |
| LCT-3 Cu 3rd Cl Conc1-D | 2.4  | 30.2 | 1.62 | 34.4 | 87.5  | 4.4  | 6.0  | 5.9  | 0.5  | 2.5                                                                                        | 5.9  | 0.5  | 0.4  |  |
| LCT-3 Cu 3rd Cl Conc2-D | 1.8  | 27.0 | 2.32 | 34.3 | 78.3  | 6.3  | 12.6 | 3.9  | 0.5  | 1.8                                                                                        | 3.9  | 0.5  | 0.7  |  |
| LCT-3 Cu 3rd Cl Conc3-D | 0.5  | 21.1 | 3.89 | 34.7 | 61.2  | 10.4 | 25.6 | 0.8  | 0.2  | 0.5                                                                                        | 0.8  | 0.2  | 0.4  |  |
| LCT-3 Cu 3rd Cl Conc-E  | 5.4  | 30.8 | 0.71 | 34.2 | 89.3  | 1.9  | 6.1  | 13.4 | 0.4  | 5.5                                                                                        | 13.4 | 0.4  | 0.9  |  |
| LCT-3 Cu 3rd Cl Conc-F  | 5.3  | 30.6 | 0.57 | 34.5 | 88.7  | 1.47 | 7.7  | 13.0 | 0.3  | 5.4                                                                                        | 13.0 | 0.3  | 1.2  |  |
| LCT-3 Cu 3rd Cl Conc-G  | 5.5  | 31.2 | 0.53 | 34.4 | 90.4  | 1.39 | 5.9  | 13.6 | 0.3  | 5.5                                                                                        | 13.6 | 0.3  | 0.9  |  |
| LCT-3 Cu 3rd Cl Tail-G  | 0.7  | 18.1 | 2.81 | 33.3 | 52.5  | 7.35 | 32.5 | 1.0  | 0.2  | 0.7                                                                                        | 1.0  | 0.2  | 0.6  |  |
| LCT-3 Cu 2nd Cl Tail-G  | 0.9  | 11.7 | 5.93 | 32.7 | 33.9  | 15.9 | 40.5 | 0.8  | 0.6  | 0.8                                                                                        | 0.8  | 0.6  | 1.0  |  |
| LCT-3 Cu 1st Cl Tail-G  | 1.7  | 7.29 | 10.3 | 33.1 | 21.1  | 28.0 | 42.8 | 1.0  | 2.0  | 1.6                                                                                        | 1.0  | 2.0  | 2.0  |  |
| LCT-3 Cu Ro Scav Conc-G | 0.3  | 15.2 | 3.85 | 34.4 | 44.1  | 10.1 | 40.6 | 0.4  | 0.1  | 0.3                                                                                        | 0.4  | 0.1  | 0.3  |  |
| LCT-3 Cu Ro Scav Conc-D | 0.6  | 12.9 | 7.33 | 33.6 | 37.4  | 19.9 | 36.3 | 0.7  | 0.5  | 0.6                                                                                        | 0.7  | 0.5  | 0.7  |  |
| LCT-3 Cu Ro Scav Tail-A | 7.7  | 3.64 | 9.77 | 33.5 | 10.6  | 26.4 | 54.8 | 2.3  | 8.8  | 7.7                                                                                        | 2.3  | 8.7  | 12.2 |  |
| LCT-3 Cu Ro Scav Tail-B | 8.0  | 3.15 | 10.0 | 33.5 | 9.13  | 27.0 | 55.6 | 2.0  | 9.2  | 7.9                                                                                        | 2.0  | 9.1  | 12.7 |  |
| LCT-3 Cu Ro Scav Tail-C | 7.4  | 2.39 | 10.0 | 33.3 | 6.93  | 27.0 | 57.1 | 1.4  | 8.5  | 7.3                                                                                        | 1.4  | 8.5  | 12.1 |  |
| LCT-3 Cu Ro Scav Tail-D | 9.9  | 3.21 | 10.5 | 33.3 | 9.30  | 28.4 | 53.7 | 2.5  | 12.0 | 9.7                                                                                        | 2.5  | 11.9 | 15.2 |  |
| LCT-3 Cu Ro Scav Tail-E | 10.6 | 3.14 | 15.5 | 33.5 | 9.10  | 42.5 | 42.3 | 2.7  | 19.1 | 10.5                                                                                       | 2.7  | 19.2 | 12.9 |  |
| LCT-3 Cu Ro Scav Tail-F | 9.3  | 3.13 | 15.7 | 33.8 | 9.07  | 43.0 | 42.7 | 2.3  | 16.8 | 9.3                                                                                        | 2.3  | 16.9 | 11.3 |  |
| LCT-3 Cu Ro Scav Tail-G | 9.8  | 3.70 | 15.2 | 33.9 | 10.7  | 41.6 | 42.6 | 2.9  | 17.2 | 9.8                                                                                        | 2.9  | 17.3 | 11.9 |  |
| Head (Calc.) A-D        | 50.7 | 12.0 | 7.31 | 33.7 | 34.9  | 19.8 | 38.9 | 49.0 | 42.9 | 50.6                                                                                       | 49.0 | 42.6 | 56.7 |  |
| Head (Calc.) E-G        | 49.3 | 12.9 | 10.0 | 33.9 | 37.4  | 27.4 | 30.6 | 51.0 | 57.1 | 49.4                                                                                       | 51.0 | 57.4 | 43.3 |  |
| Head (Calc.) A-G        | 100  | 12.5 | 8.64 | 33.8 | 36.2  | 23.5 | 34.8 | 100  | 100  | 100                                                                                        | 100  | 100  | 100  |  |
| Head (Exp.) A-G         |      |      |      |      |       |      |      |      |      |                                                                                            |      |      |      |  |

| Table 26: | Metallurgical | Balance | of LO | CT-3 |
|-----------|---------------|---------|-------|------|
|-----------|---------------|---------|-------|------|

| Broduct                     | Wt   | Assays, % |      |      |      |      |      | % Stage Distribution |      |      |      |      |      |
|-----------------------------|------|-----------|------|------|------|------|------|----------------------|------|------|------|------|------|
| Product                     |      | Cu        | Ni   | S    | Ср   | Pn   | Po   | Cu                   | Ni   | S    | Ср   | Pn   | Ро   |
| Cu 3rd Cl Conc 1-2          | 30.0 | 28.8      | 1.92 | 34.4 | 83.6 | 5.21 | 8.80 | 79.4                 | 7.3  | 30.7 | 79.4 | 7.3  | 6.6  |
| Cu Ro Scav Tail             | 70.0 | 3.21      | 10.5 | 33.3 | 9.30 | 28.4 | 53.7 | 20.6                 | 92.7 | 69.3 | 20.6 | 92.7 | 93.4 |
| LCT-2 Cu/Ni Cl Conc (Calc.) | 100  | 10.9      | 7.92 | 33.6 | 31.6 | 21.4 | 40.2 | 100                  | 100  | 100  | 100  | 100  | 100  |

#### Table 27: LCT-3 Metallurgical Projection-1 (D)

#### Table 28: LCT-3 Metallurgical Projection-2 (F-G)

| Broduct                     | Wt   | Assays, % |      |      |      |      | % Stage Distribution |      |      |      |      |      |      |
|-----------------------------|------|-----------|------|------|------|------|----------------------|------|------|------|------|------|------|
| Floduct                     | %    | Cu        | Ni   | S    | Ср   | Pn   | Ро                   | Cu   | Ni   | S    | Ср   | Pn   | Ро   |
| Cu 3rd Cl Conc 1-2          | 36.1 | 30.9      | 0.55 | 34.4 | 89.6 | 1.43 | 6.82                 | 83.6 | 2.0  | 36.5 | 83.6 | 1.9  | 8.3  |
| Cu Ro Scav Tail             | 63.9 | 3.42      | 15.4 | 33.9 | 9.92 | 42.3 | 42.6                 | 16.4 | 98.0 | 63.5 | 16.4 | 98.1 | 91.7 |
| LCT-1 Cu/Ni Cl Conc (Calc.) | 100  | 13.3      | 10.1 | 34.1 | 38.7 | 27.5 | 29.7                 | 100  | 100  | 100  | 100  | 100  | 100  |

#### 4.4.3. LCT-1 & LCT-3 and LCT-2 & LCT-3 Combined Results

The combined results of LCT-1 & LCT-3, and LCT-2 & LCT-3 are presented in Table 29 and Table 30, respectively. The copper overall recovery of the Cu 3<sup>rd</sup> Cleaner Concentrate was 74-79% at a grade of 29-31% Cu. The nickel overall recovery of the combined Cu Rougher Scavenger Tailings and the Po 3<sup>rd</sup> Cleaner Concentrate was 62-64% at a grade of 11-12% Ni and ~3% Cu.

The nickel content in Cu concentrate could be maintained under 1% Ni by adding the proper dosage of lime to the polish mill and controlling PAX dosage to the copper rougher and scavenger stages.

| Broduct                                                 | Wt    |      |      | Assa | ys, % |      |      | % Distribution |      |      |      |      |      |
|---------------------------------------------------------|-------|------|------|------|-------|------|------|----------------|------|------|------|------|------|
| FIOUUCI                                                 | %     | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Cu             | Ni   | S    | Ср   | Pn   | Ро   |
| Cu 3rd Cl Conc 1-2                                      | 2.4   | 30.9 | 0.55 | 34.4 | 89.6  | 1.43 | 6.82 | 78.8           | 1.1  | 5.3  | 78.8 | 1.2  | 0.5  |
| Cu Ro Scav Tail                                         | 4.3   | 3.64 | 14.5 | 34.2 | 10.6  | 39.6 | 42.9 | 15.4           | 54.2 | 9.2  | 15.4 | 64.6 | 5.0  |
| Cu/Ni Scalp Tail                                        | 11.7  | 0.16 | 1.07 | 32.8 | 0.47  | 1.80 | 83.3 | 1.9            | 11.0 | 24.2 | 1.9  | 8.1  | 26.8 |
| Po 3rd Cl Conc                                          | 1.7   | 0.78 | 5.54 | 37.1 | 2.27  | 14.2 | 82.1 | 1.3            | 8.1  | 3.9  | 1.3  | 9.1  | 3.8  |
| Po 1st Cl Tails                                         | 22.2  | 0.09 | 1.02 | 33.6 | 0.26  | 1.62 | 85.7 | 2.0            | 19.9 | 47.0 | 2.0  | 13.8 | 52.3 |
| Po Rougher Tail                                         | 57.8  | 0.01 | 0.11 | 2.90 | 0.03  | 0.14 | 7.37 | 0.6            | 5.8  | 10.5 | 0.6  | 3.2  | 11.7 |
| Comb. Ni Conc<br>(Cu Ro Scav Tails + Po 3rd<br>Cl Conc) | 5.9   | 2.84 | 12.0 | 35.0 | 8.23  | 32.4 | 53.9 | 16.7           | 62.3 | 13.0 | 16.7 | 73.7 | 8.8  |
| Head (Calc.)                                            | 100.0 | 1.00 | 1.14 | 15.9 | 2.91  | 2.61 | 36.4 | 100            | 100  | 100  | 100  | 100  | 100  |
| Head (Dir.)                                             |       | 1.07 | 1.17 | 16.5 | 3.10  | 2.69 | 37.7 |                |      |      |      |      |      |

#### Table 29: LCT-1 (B-F) & LCT-3 (F-G) Combined Metallurgical Projection

| Broduct                                                 | Wt    |      |      | Assa | ys, % |      |      | % Distribution |      |      |      |      |      |
|---------------------------------------------------------|-------|------|------|------|-------|------|------|----------------|------|------|------|------|------|
| Floduci                                                 | %     | Cu   | Ni   | S    | Ср    | Pn   | Ро   | Cu             | Ni   | S    | Ср   | Pn   | Ро   |
| Cu 3rd Cl Conc 1-2                                      | 2.8   | 28.8 | 1.92 | 34.4 | 83.6  | 5.21 | 8.80 | 74.2           | 4.6  | 6.3  | 74.2 | 5.4  | 0.7  |
| Cu Ro Scav Tail                                         | 6.6   | 3.19 | 11.0 | 35.0 | 9.24  | 29.6 | 58.8 | 19.2           | 59.0 | 14.2 | 19.2 | 68.5 | 10.5 |
| Cu/Ni Scalp Tail                                        | 7.5   | 0.16 | 0.86 | 33.8 | 0.46  | 1.17 | 86.3 | 1.1            | 5.2  | 15.6 | 1.1  | 3.1  | 17.6 |
| Po 3rd Cl Conc                                          | 0.8   | 1.66 | 7.02 | 36.3 | 4.80  | 18.5 | 74.1 | 1.3            | 4.8  | 1.9  | 1.3  | 5.4  | 1.7  |
| Po 1st Cl Tails                                         | 23.7  | 0.18 | 1.12 | 34.5 | 0.51  | 1.89 | 87.5 | 3.8            | 21.6 | 50.2 | 3.8  | 15.6 | 56.1 |
| Po Rougher Tail                                         | 58.5  | 0.01 | 0.10 | 3.29 | 0.02  | 0.10 | 8.45 | 0.4            | 4.8  | 11.8 | 0.4  | 2.0  | 13.4 |
| Comb. Ni Conc<br>(Cu Ro Scav Tails + Po 3rd<br>Cl Conc) | 7.4   | 3.02 | 10.5 | 35.1 | 8.74  | 28.4 | 60.5 | 20.5           | 63.7 | 16.1 | 20.5 | 73.9 | 12.2 |
| Head (Calc.)                                            | 100.0 | 1.10 | 1.23 | 16.3 | 3.18  | 2.86 | 36.9 | 100            | 100  | 100  | 100  | 100  | 100  |
| Head (Dir.)                                             |       | 1.07 | 1.17 | 16.5 | 3.10  | 2.69 | 37.7 |                |      |      |      |      |      |

#### Table 30: LCT-2 (D-F) & LCT-3 (D) Combined Metallurgical Projection

#### 4.5. Detailed Concentrate Assays

Concentrates from LCT-2 and LCT-3 were submitted for a typical smelter analysis suite of elements as summarized in Table 31. For each of the tests, the concentrates from the final two or three cycles (deemed to be the steady state cycles) were combined and submitted for assay. The cobalt seemed to follow the nickel, with a grade of 0.94% Co and 0.37% Co in the Cu Rougher Scavenger Tails and Po 3<sup>rd</sup> Cleaner Concentrate, respectively. The cobalt content in the Cu 3<sup>rd</sup> Cleaner Concentrate was 250 g/t Co. No obvious deleterious elements were present.

|                               |      | LCT-3 Cu 3rd Cl | LCT-3 Cu Ro | LCT-2 Po 3rd Cl |
|-------------------------------|------|-----------------|-------------|-----------------|
|                               |      | Conc            | Scav Tails  | Conc            |
| Analyte                       | Unit | F-G             | F-G         | D-F             |
| Cu                            | %    | 31.2            | 3.4         | 1.68            |
| Ni                            | %    | 0.55            | 15.2        | 7.21            |
| S                             | %    | 34.4            | 33.7        | 35.6            |
| Au                            | g/t  | 0.36            | 0.17        | 0.13            |
| Pt                            | g/t  | 0.31            | 0.20        | 0.28            |
| Pd                            | g/t  | 1.06            | 0.40        | 0.21            |
| Rh                            | g/t  | 0.02            | < 0.02      | 0.02            |
| Hg                            | g/t  | < 0.3           | < 0.3       | < 0.3           |
| Ag                            | g/t  | 29              | 18          | 9               |
| AI                            | g/t  | 240             | 1200        | 617             |
| As                            | g/t  | < 30            | < 30        | < 30            |
| Ва                            | g/t  | 4               | 8           | 7               |
| Be                            | g/t  | < 0.05          | < 0.05      | < 0.05          |
| Bi                            | g/t  | < 30            | < 30        | < 30            |
| Са                            | g/t  | 1040            | 4910        | 534             |
| Cd                            | g/t  | 21              | 6           | 4               |
| Со                            | g/t  | 250             | 9390        | 3690            |
| Cr                            | g/t  | 6               | 57          | 22              |
| Fe                            | g/t  | 321000          | 405000      | 502000          |
| K                             | g/t  | < 200           | < 200       | < 200           |
| Li                            | g/t  | < 20            | < 20        | < 20            |
| Mg                            | g/t  | 175             | 742         | 311             |
| Mn                            | g/t  | 26              | 98          | 51              |
| Мо                            | g/t  | < 10            | < 10        | < 10            |
| Na                            | g/t  | 32              | 285         | 186             |
| P                             | g/t  | < 200           | < 200       | < 200           |
| Pb                            | g/t  | 61.9            | 66.4        | 75.4            |
| Sb                            | g/t  | 35              | 96          | 56              |
| Se                            | g/t  | 32              | < 30        | < 30            |
| Sn                            | g/t  | < 20            | < 20        | < 20            |
| Sr                            | g/t  | 0.8             | 3.9         | 1.5             |
| Ti                            | g/t  | 17              | 69          | 33              |
| TI                            | g/t  | < 40            | < 40        | < 40            |
| U                             | g/t  | < 100           | < 100       | < 100           |
| V                             | g/t  | < 6             | < 6         | < 6             |
| Y                             | g/t  | < 10            | < 10        | < 10            |
| Zn                            | g/t  | 390             | 157         | 151             |
| F                             | %    | < 0.005         | < 0.005     | < 0.005         |
| CI (HNO <sub>3</sub> soluble) | g/t  | 16              | 30          | 24              |
| Si                            | %    | 0.09            | 0.4         | 0.23            |

Table 31: Detailed Analysis on LCT-2, LCT-3 Products

#### 4.6. Process Mineralogy

F-8 Cu/Ni 1<sup>st</sup> Cleaner Tails and Po 1<sup>st</sup> Cleaner Tails (single size) were submitted for QEMSCAN analysis to better understand nickel losses. Figure 19 presents the pentlandite association summary. Figure 20 shows the image grids of the pentlandite association. The complete mineralogy report can be found in Appendix D.

The mineralogy results indicated that the main losses of pentlandite were due to poor liberation, particularly due to associations with pyrrhotite. A fine regrind, possibly a regrind on the Cu/Ni 1<sup>st</sup> Cleaner Tails might be beneficial to improved nickel recovery. This is consistent with what was observed in the flotation tests.



Figure 19: Pentlandite Association of Test F-8 Cu/Ni 1st Cleaner Tails and Po 1st Cleaner Tails



Figure 20: Image Grid: Pentlandite Association of Test F-8 Cu/Ni 1<sup>st</sup> Cleaner Tails and Po 1<sup>st</sup> Cleaner Tails

### **Conclusions and Recommendations**

The following can be concluded:

- The Phikwe -Selebi samples received for this testwork program contained 1.07% copper and 1.17% nickel in the SN Comp, high copper grade in the S Comp (1.90% Cu, 0.88% Ni), and low copper grade in the P Comp (0.42% Cu, 0.79% Ni).
- Mineralogy showed that chalcopyrite, pentlandite, and pyrrhotite were the major sulphide minerals, along with lesser amounts of pyrite. Higher pyrrhotite was present in the SN Comp.
- Liberation of the chalcopyrite was good at a grind size of 80% passing ~100 μm, but liberation of the pentlandite was poor at ~50-65% with strong associations with pyrrhotite. A fine regrind is required to liberate pentlandite.
- The proportion of total nickel in pentlandite was ~80%, with the majority (~15%) of the remaining nickel contained in pyrrhotite.
- The grindability tests indicated the Phikwe Selebi samples were very soft to medium in hardness, and slightly abrasive. The Phikwe samples were slightly harder than the Selebi samples. The samples were softer at coarser grind sizes (SAG particle sizes), trending harder at finer grind sizes (ball mill particle sizes).
- The rougher kinetics performance of the SN Comp with a primary grind at a F<sub>80</sub> of ~100 μm was similar to those performed at the 160 μm and 70 μm. However, the mass pull and metal recoveries of the coarse grind (160 μm) test was lower.
- A dosage of 25 g/t diethylenetriamine (DETA) was required to depress pyrrhotite effectively in the Cu/Ni cleaners and Po cleaners, but low dosages of PAX were still required to maintain the selectivity. Higher dosages of DETA may depress pentlandite flotation.
- A polish grind and high dosage of lime (>500 g/t) were critical for depressing pentlandite during Cu-Ni separation circuit.
- The recovery of copper to the Cu concentrate was found to be 74-79% at a grade of 29-31% Cu, with an additional 15-19% recovered to the Ni concentrate. The nickel recovery to the Ni concentrate (combined Copper Rougher Scavenger Tails and Po 3<sup>rd</sup> Cleaner Concentrate) was 62-64% at a grade of 11-12% Ni.

Recommendations:

- Further flowsheet and reagent optimization should be completed to better establish the limits to metallurgy. More representative samples should be provided for this testwork.
  - The lime dosage was critical for pentlandite depression in the Cu-Ni separation stage. It is recommended to perform further tests to evaluate the minimum dosage required.

- Pentlandite flotation was sensitive to the lime dosage. It is recommended to investigate a lower lime dosage in the Cu/Ni rougher and cleaner stages to maximize the nickel recovery.
- o Repeat test F-40, to evaluate the flowsheet developed for Selkirk Samples.
- Variability testing should be considered.
  - Hardness characteristics as a function of sulphur head grade should be examined.
  - Flotation evaluation of varying head grades to better understand grade-recovery relationships and dosing strategies for reagents, which will be critical for the successful operation of a future commercial processing plant.
- Environmental testing in support of a tailings management plan.
- Solid-liquid separation testing on various streams to help size thickeners, pumps, and filters.

# Appendix A – Sample Receipt and Preparation

# 18559-0118-Jun-21Sample Preparation Diagram - SN Comp



Note: No hazards that are known, other than silica

#### 18559-01 Sample Preparation Diagram - P Comp

ID Instruction Est Wt. kg D15570 include entire sample 14.7 D15571 include entire sample 14.6 D15572 include entire sample 15.0 D15573 include entire sample 15.0 include entire sample D15581 5.6 D15574 incl. 5.00 kg, store rem. 5.0 include entire sample D15577 7.4 TOTAL 77.3 Composite nom 6 Store sample for potential further work mesh rejects ~40 kg Stage-crush to -10 mesh (or 1.7 mm) Rotary split into 20x 2 kg test charges Split ~100-200 g for Split ~100-200 g for mineralogy assays

Note: No hazards that are known, other than silica

18-Jun-21

#### 18559-01 Sample Preparation Diagram - S Comp

Note: No hazards that are known, other than silica



18-Jun-21

#### 28-Jun-21

#### 18559-01 Sample Preparation Diagram - SN Comp

Note: No hazards that are known, other than silica



#### 18559-01 Sample Preparation Diagram - P Comp

Note: No hazards that are known, other than silica



28-Jun-21

#### 28-Jun-21

### 18559-01 Sample Preparation Diagram - S Comp

Note: No hazards that are known, other than silica





Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

### LR Internal Dept 14

Attn : D. Imeson

28-June-2021

Date Rec.: 10 June 2021 LR Report : CA02461-JUN21 Project : CA20M-00000-110-18559-0 1

# CERTIFICATE OF ANALYSIS

### **Final Report**

| Sample ID  | Cu<br>% | Ni<br>% | S<br>% |
|------------|---------|---------|--------|
| 1: D15551  | 1.08    | 2.30    | 33.3   |
| 2: D15552  | 0.86    | 2.44    | 35.7   |
| 3: D15553  | 0.68    | 2.42    | 34.6   |
| 4: D15554  | < 0.01  | < 0.01  | 0.14   |
| 5: D15555  | 1.11    | 2.24    | 33.1   |
| 6: D15556  | 1.21    | 2.46    | 36.1   |
| 7: D15558  | 0.41    | 0.40    | 5.78   |
| 8: D15559  | 0.072   | 0.096   | 0.96   |
| 9: D15560  | 0.31    | 0.27    | 3.77   |
| 10: D15561 | 0.028   | 0.016   | 0.18   |
| 11: D15562 | 1.10    | 0.97    | 15.2   |
| 12: D15563 | 15.2    | 0.49    | 21.5   |
| 13: D15564 | 1.62    | 1.67    | 25.0   |
| 14: D15565 | 2.24    | 1.99    | 29.9   |
| 15: D15566 | < 0.01  | < 0.01  | 0.07   |
| 16: D15567 | < 0.01  | < 0.01  | 0.10   |
| 17: D15568 | 1.90    | 2.57    | 34.0   |
| 18: D15569 | 1.26    | 2.86    | 37.4   |
| 19: D15570 | 0.69    | 1.04    | 14.5   |
| 20: D15571 | 0.41    | 0.94    | 12.3   |

Control Quality Analysis Not suitable for commercial exchange

0002545435

Page 1 of 2

on of liability, indemnification and jurisdiction y acting at the Client's direction. The Findings from which the sample(s) is/are said to be populary ration of the content or appearance above. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms\_and issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) draw constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company acc extracted. The Findings report on the samples provided by the client and are not intended for commercial or contractual setting of this document is unlawful and offenders may be prosecuted to the fullest extent in onditions and / or pr ded by the Client or by a third part with regard to the crisin or source Any unaction of alteration force ethologic of mation available upon re



SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA02461-JUN21 56

Sarah Thyret-Arbour Technologist, Mineral Services, Analytical

0002545435

Page 2 of 2

rage 2 or 2 This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms\_and\_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample vertice is and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.



P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

#### LR Internal Dept 14

Attn : D. Imeson

28-June-2021

 Date Rec. :
 10 June 2021

 LR Report :
 CA02462-JUN21

 Project :
 CA20M-00000-110-18559-0

 1
 1

## CERTIFICATE OF ANALYSIS Final Report

#### Sample ID S Cu Ni % % % 0.29 1: D15572 1.05 14.0 2: D15573 0.26 0.91 11.7 3: D15581 0.064 0.012 0.12 4: D15574 < 0.01 < 0.01 0.04 5: D15575 < 0.01 < 0.01 0.05 6: D15576 0.16 0.24 2.41 0.94 0.35 4.71 7: D15577 8: D15578 20.2 0.88 32.2 9: D15579 0.28 3.09 35.0 10: D15580 16.0 1.24 31.5 2.90 11: D15582 0.72 11.0 12: D15583 3.28 0.74 11.9 13: D15584 2.84 0.68 10.3 14: D15585 3.98 0.22 6.43 15: D15586 < 0.01 < 0.01 0.04 < 0.01 0.06 16: D15587 < 0.01 17: D15588 0.17 0.073 0.60 18: D15589 0.10 0.063 0.28 19: D15590 0.098 0.68 7.44

Control Quality Assay Not Suitable for Commercial Exchange

Thyset-Achar

Sarah Thyret Arbour Technologist, Mineral Services, Analytical

2002545458

OnLine LIMS

57

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms\_and\_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample's provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.



# **QEMSCAN DATA**

prepared for:

# **North American Nickel**

Project 18559-01 MI5046-JUN21 July 14, 2021

Prepared by:

Margot Aldis/Chris Gunning Mineralogist/Senior Mineralogist

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy) (METH# 8.11.1) used by SGS Minerals Services

SGS Canada

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel. (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



Assay Reconciliation

| Sample        |          | S      | N Comp 30 M | lin       |       |
|---------------|----------|--------|-------------|-----------|-------|
| Element       | Combined | +106um | -106/+53um  | -53/+20um | -20um |
| Mg (QEMSCAN)  | 2.55     | 2.67   | 2.66        | 2.24      | 2.58  |
| Mg (Chemical) | 2.24     | 2.63   | 2.17        | 2.00      | 2.20  |
| Si (QEMSCAN)  | 15.23    | 16.19  | 16.32       | 13.53     | 14.29 |
| Si (Chemical) | 13.08    | 14.90  | 13.10       | 12.00     | 12.30 |
| S (QEMSCAN)   | 16.79    | 15.63  | 15.85       | 19.24     | 16.88 |
| S (Chemical)  | 16.39    | 13.70  | 17.00       | 18.80     | 15.70 |
| K (QEMSCAN)   | 0.30     | 0.37   | 0.35        | 0.21      | 0.24  |
| K (Chemical)  | 0.34     | 0.42   | 0.34        | 0.25      | 0.37  |
| Ca (QEMSCAN)  | 3.19     | 3.46   | 3.35        | 2.93      | 2.91  |
| Ca (Chemical) | 2.42     | 2.62   | 2.44        | 2.24      | 2.36  |
| Ti (QEMSCAN)  | 0.09     | 0.08   | 0.11        | 0.08      | 0.07  |
| Ti (Chemical) | 0.13     | 0.14   | 0.11        | 0.10      | 0.16  |
| Mn (QEMSCAN)  | 0.09     | 0.07   | 0.07        | 0.07      | 0.17  |
| Mn (Chemical) | 0.08     | 0.09   | 0.08        | 0.07      | 0.08  |
| Fe (QEMSCAN)  | 32.43    | 31.61  | 31.85       | 34.97     | 31.56 |
| Fe (Chemical) | 33.31    | 31.20  | 33.70       | 35.70     | 32.40 |
| Ni (QEMSCAN)  | 1.26     | 0.90   | 0.75        | 1.61      | 2.05  |
| Ni (Chemical) | 1.17     | 0.59   | 1.00        | 1.43      | 1.74  |
| Cu (QEMSCAN)  | 1.07     | 0.62   | 0.66        | 1.32      | 1.93  |
| Cu (Chemical) | 1.05     | 0.44   | 0.87        | 1.22      | 1.76  |



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

#### <u>Modals</u>

| Survey     |                    | 18559-01 / MI5046-JUN21 |        |          |        |                 |        |          |        |          |
|------------|--------------------|-------------------------|--------|----------|--------|-----------------|--------|----------|--------|----------|
| Project    |                    |                         |        |          | Nortr  | h American Nici | kei    |          |        |          |
| Sample     |                    |                         |        |          | SI     | N Comp 30 Min   |        |          |        |          |
| Fraction   |                    | Combined                | +10    | )6um     | -106/- | +53um           | -53/+  | -20um    | -20u   | Im       |
| Mass Size  | Distribution (%)   |                         | 2      | 2.3      | 33     | 3.6             | 2      | 2.4      | 21.    | 7        |
| Calculated | ESD Particle Size  | 22                      |        | 60       | 6      | 62              |        | 22       | 8      |          |
|            |                    | Sample                  | Sample | Fraction | Sample | Fraction        | Sample | Fraction | Sample | Fraction |
| Mineral    | Pyrrhotite         | 37.03                   | 8.04   | 36.04    | 12.41  | 36.92           | 9.36   | 41.80    | 7.22   | 33.29    |
| Mass (%)   | Chalcopyrite       | 3.10                    | 0.40   | 1.80     | 0.64   | 1.91            | 0.85   | 3.80     | 1.21   | 5.56     |
|            | Pentlandite        | 3.13                    | 0.47   | 2.11     | 0.55   | 1.65            | 0.92   | 4.09     | 1.19   | 5.47     |
|            | Pyrite/Marcasite   | 0.12                    | 0.02   | 0.10     | 0.04   | 0.11            | 0.03   | 0.15     | 0.03   | 0.14     |
|            | Other_Sulphides    | 0.04                    | 0.01   | 0.05     | 0.01   | 0.02            | 0.00   | 0.02     | 0.02   | 0.08     |
|            | Fe-Oxides          | 6.25                    | 1.54   | 6.90     | 2.27   | 6.75            | 1.33   | 5.96     | 1.11   | 5.12     |
|            | Other_Oxides       | 0.15                    | 0.03   | 0.12     | 0.08   | 0.23            | 0.03   | 0.13     | 0.01   | 0.07     |
|            | Chlorite/Clays     | 7.90                    | 1.60   | 7.16     | 2.21   | 6.58            | 1.42   | 6.33     | 2.67   | 12.31    |
|            | Biotite            | 1.77                    | 0.48   | 2.16     | 0.79   | 2.36            | 0.26   | 1.16     | 0.24   | 1.10     |
|            | Talc               | 0.17                    | 0.01   | 0.05     | 0.02   | 0.04            | 0.04   | 0.17     | 0.11   | 0.50     |
|            | Quartz             | 7.71                    | 1.76   | 7.89     | 2.91   | 8.66            | 1.55   | 6.94     | 1.49   | 6.85     |
|            | Plagioclase        | 10.22                   | 2.49   | 11.17    | 3.68   | 10.94           | 2.12   | 9.48     | 1.93   | 8.88     |
|            | Amphibole/Pyroxene | 20.57                   | 4.93   | 22.10    | 7.42   | 22.07           | 4.14   | 18.46    | 4.09   | 18.85    |
|            | K-Feldspar         | 0.65                    | 0.20   | 0.89     | 0.24   | 0.71            | 0.11   | 0.48     | 0.10   | 0.48     |
|            | Epidote            | 0.56                    | 0.16   | 0.70     | 0.15   | 0.44            | 0.11   | 0.50     | 0.14   | 0.65     |
|            | Titanite/sphene    | 0.10                    | 0.02   | 0.09     | 0.02   | 0.06            | 0.02   | 0.08     | 0.04   | 0.18     |
|            | Other Silicates    | 0.34                    | 0.11   | 0.51     | 0.15   | 0.45            | 0.06   | 0.25     | 0.02   | 0.09     |
|            | Carbonates         | 0.02                    | 0.00   | 0.01     | 0.01   | 0.02            | 0.01   | 0.03     | 0.01   | 0.03     |
|            | Apatite            | 0.11                    | 0.03   | 0.14     | 0.01   | 0.04            | 0.02   | 0.11     | 0.04   | 0.18     |
|            | Other              | 0.06                    | 0.01   | 0.03     | 0.01   | 0.02            | 0.02   | 0.07     | 0.04   | 0.16     |
|            | Total              | 100.00                  | 22.30  | 100.0    | 33.60  | 100.0           | 22.40  | 100.0    | 21.70  | 100.0    |
| Mean       | Pyrrhotite         | 22                      |        | 57       | 5      | 58              | 2      | 21       | 9      |          |
| Grain Size | Chalcopyrite       | 14                      |        | 45       | 4      | 47              |        | 23       | 7      |          |
| by         | Pentlandite        | 12                      |        | 26       | 2      | 22              |        | 17       | 7      |          |
| Frequenc   | Pyrite/Marcasite   | 12                      | :      | 38       | 3      | 38              |        | 16       | 5      |          |
| v (µm)     | Other_Sulphides    | 5                       |        | 14       |        | 8               |        | 5        | 4      |          |
|            | Fe-Oxides          | 24                      |        | 56       | 5      | 57              |        | 18       | 9      |          |
|            | Other_Oxides       | 16                      |        | 22       | 2      | 25              | -      | 12       | 6      |          |
|            | Chlorite/Clays     | 9                       | · ·    | 18       |        | 16              |        | 9        | 5      |          |
|            | Biotite            | 18                      |        | 29       | 3      | 31              |        | 13       | 7      |          |
|            | Talc               | 5                       |        | 9        |        | 8               |        | 6        | 5      |          |
|            | Quartz             | 21                      |        | 54       | Ę      | 56              | 2      | 21       | 7      |          |
|            | Plagioclase        | 21                      |        | 43       | 4      | 43              |        | 19       | 8      |          |
|            | Amphibole/Pyroxene | 21                      |        | 46       | 4      | 46              |        | 19       | 8      |          |
|            | K-Feldspar         | 10                      |        | 15       | 1      | 12              |        | 9        | 6      |          |
|            | Epidote            | 8                       |        | 18       |        | 13              |        | 7        | 5      |          |
|            | Titanite/sphene    | 7                       |        | 11       |        | 10              |        | 8        | 6      |          |
|            | Other Silicates    | 10                      |        | 13       | -      | 12              |        | 6        | 5      |          |
|            | Carbonates         | 11                      | · ·    | 11       | -      | 13              |        | 11       | 9      |          |
|            | Apatite            | 13                      |        | 55       | 3      | 30              |        | 19       | 7      |          |
|            | Other              | 6                       |        | 9        |        | 8               | 9      |          | 5      |          |

Page 4 of 21

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

#### Cu Deportment



## Elemental Deportment (Mass Cu)

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Chalcopyrite          | 1.07     | 0.14   | 0.22       | 0.29      | 0.42  |
| Other_Sulphides       | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Other                 | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Total                 | 1.07     | 0.14   | 0.22       | 0.30      | 0.42  |
| Total (% in fraction) | 100.00   | 12.94  | 20.72      | 27.46     | 38.88 |



### Elemental Deportment (Mass % Cu)

| Mineral Name    | Combined | +106um | -106/+53um | -53/+20um | -20um  |
|-----------------|----------|--------|------------|-----------|--------|
| Chalcopyrite    | 99.87    | 99.72  | 99.74      | 99.87     | 99.98  |
| Other_Sulphides | 0.13     | 0.28   | 0.24       | 0.13      | 0.02   |
| Other           | 0.00     | 0.00   | 0.01       | 0.00      | 0.00   |
| Total           | 100.00   | 100.00 | 100.00     | 100.00    | 100.00 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

#### Ni Deportment





#### <u>Elemental Deportment (Mass % Ni)</u>

| Mineral Name    | Combined | +106um | -106/+53um | -53/+20um | -20um  |
|-----------------|----------|--------|------------|-----------|--------|
| Pyrrhotite      | 14.73    | 19.97  | 24.65      | 13.00     | 8.13   |
| Pentlandite     | 85.06    | 80.00  | 75.31      | 86.96     | 91.33  |
| Other_Sulphides | 0.21     | 0.03   | 0.04       | 0.03      | 0.55   |
| Total           | 100.00   | 100.00 | 100.00     | 100.00    | 100.00 |

### <u>Elemental Deportment (Mass Ni)</u>

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Pyrrhotite            | 0.19     | 0.04   | 0.06       | 0.05      | 0.04  |
| Pentlandite           | 1.07     | 0.16   | 0.19       | 0.31      | 0.41  |
| Other_Sulphides       | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Total                 | 1.26     | 0.20   | 0.25       | 0.36      | 0.44  |
| Total (% in fraction) | 100.00   | 16.00  | 20.01      | 28.63     | 35.35 |
High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pentlandite Liberation





#### Absolute Mass of Pentlandite Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Pn               | 1.73     | 0.16   | 0.15       | 0.56      | 0.86  |
| Lib Pn                | 0.27     | 0.04   | 0.05       | 0.06      | 0.12  |
| Midds Pn              | 0.29     | 0.05   | 0.06       | 0.09      | 0.09  |
| Sub Midds Pn          | 0.41     | 0.09   | 0.13       | 0.12      | 0.07  |
| Locked Pn             | 0.43     | 0.12   | 0.17       | 0.08      | 0.05  |
| Total                 | 3.13     | 0.47   | 0.55       | 0.92      | 1.19  |
| Total (% in fraction) | 100.0    | 15.1   | 17.7       | 29.3      | 38.0  |

# Normalized Mass of Pentlandite Across Fraction

| Mineral Name | Combined | +106um | -106/+53um | -53/+20um | -20um |
|--------------|----------|--------|------------|-----------|-------|
| Free Pn      | 55.22    | 33.42  | 27.16      | 61.24     | 72.30 |
| Lib Pn       | 8.72     | 9.10   | 8.17       | 6.79      | 10.31 |
| Midds Pn     | 9.37     | 11.55  | 10.24      | 10.28     | 7.39  |
| Sub Midds Pn | 12.98    | 19.43  | 23.06      | 12.60     | 6.00  |
| Locked Pn    | 13.72    | 26.51  | 31.37      | 9.08      | 4.00  |
| Total        | 100.0    | 100.0  | 100.0      | 100.0     | 100.0 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# **Pentlandite Association**

# Absolute Mass of Pentlandite Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Pn               | 1.73     | 0.16   | 0.15       | 0.56      | 0.86  |
| Lib Pn                | 0.27     | 0.04   | 0.05       | 0.06      | 0.12  |
| Pn :Po                | 0.99     | 0.24   | 0.33       | 0.26      | 0.17  |
| Pn: Cp                | 0.04     | 0.00   | 0.01       | 0.02      | 0.01  |
| Pn :Py                | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Pn :Fe-Oxides         | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Pn: Sil               | 0.03     | 0.01   | 0.00       | 0.01      | 0.02  |
| Pn: Cp :Py            | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Complex               | 0.07     | 0.02   | 0.02       | 0.01      | 0.01  |
| Total                 | 3.13     | 0.47   | 0.55       | 0.92      | 1.19  |
| Total (% in fraction) | 100.0    | 15.1   | 17.7       | 29.3      | 38.0  |

# Normalized Mass of Pentlandite Across Fraction

| Mineral Name  | Combined    | +106um     | -106/+53um  | -53/+20um   | -20um       |
|---------------|-------------|------------|-------------|-------------|-------------|
| Free Pn       | 55.22       | 33.42      | 27.16       | 61.24       | 72.30       |
| Lib Pn        | 8.72        | 9.10       | 8.17        | 6.79        | 10.31       |
| Pn :Po        | 31.63       | 50.75      | 58.76       | 28.25       | 13.99       |
| Pn: Cp        | 1.15        | 0.61       | 1.18        | 1.83        | 0.83        |
| Pn :Py        | 0.01        | 0.00       | 0.00        | 0.01        | 0.01        |
| Pn :Fe-Oxides | 0.06        | 0.06       | 0.01        | 0.10        | 0.04        |
| Pn: Sil       | 1.03        | 1.21       | 0.41        | 0.55        | 1.61        |
| Pn: Cp :Py    | 0.04        | 0.00       | 0.18        | 0.01        | 0.00        |
| Complex       | 2.15        | 4.85       | 4.12        | 1.20        | 0.90        |
| Total         | 100.0       | 100.0      | 100.0       | 100.0       | 100.0       |
| Liberated     | 63.93407182 | 42.5146886 | 35.33442787 | 68.03659564 | 82.61122419 |







# Image Grid - Pentlandite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5046-JUN21



H 4.7 μm H 4.0 μm

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pyrrhotite Liberation





# Absolute Mass of Pyrrhotite Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Po               | 32.44    | 6.86   | 10.76      | 8.37      | 6.46  |
| Lib Po                | 3.14     | 0.87   | 1.18       | 0.63      | 0.45  |
| Midds Po              | 1.06     | 0.22   | 0.38       | 0.27      | 0.19  |
| Sub Midds Po          | 0.25     | 0.06   | 0.06       | 0.07      | 0.07  |
| Locked Po             | 0.14     | 0.02   | 0.04       | 0.03      | 0.05  |
| Total                 | 37.03    | 8.04   | 12.41      | 9.36      | 7.22  |
| Total (% in fraction) | 100.0    | 21.7   | 33.5       | 25.3      | 19.5  |

# Normalized Mass of Pyrrhotite Across Fraction

| Mineral Name | Combined | +106um | -106/+53um | -53/+20um | -20um |
|--------------|----------|--------|------------|-----------|-------|
| Free Po      | 87.61    | 85.31  | 86.69      | 89.43     | 89.37 |
| Lib Po       | 8.48     | 10.88  | 9.54       | 6.70      | 6.30  |
| Midds Po     | 2.86     | 2.77   | 3.03       | 2.86      | 2.67  |
| Sub Midds Po | 0.68     | 0.76   | 0.46       | 0.70      | 0.97  |
| Locked Po    | 0.37     | 0.27   | 0.29       | 0.32      | 0.70  |
| Total        | 100.0    | 100.0  | 100.0      | 100.0     | 100.0 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pyrrhotite Association





# Absolute Mass of Pyrrhotite Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Po               | 32.44    | 6.86   | 10.76      | 8.37      | 6.46  |
| Lib Po                | 3.14     | 0.87   | 1.18       | 0.63      | 0.45  |
| Po : Cp               | 0.14     | 0.03   | 0.08       | 0.02      | 0.02  |
| Po :Py                | 0.01     | 0.00   | 0.00       | 0.00      | 0.00  |
| Po: Pn                | 0.94     | 0.21   | 0.31       | 0.26      | 0.16  |
| Po :Fe-Oxides         | 0.12     | 0.01   | 0.01       | 0.03      | 0.07  |
| Po: Sil               | 0.17     | 0.04   | 0.05       | 0.03      | 0.05  |
| Po: Pn :Py            | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Complex               | 0.07     | 0.02   | 0.02       | 0.02      | 0.01  |
| Total                 | 37.03    | 8.04   | 12.41      | 9.36      | 7.22  |
| Total (% in fraction) | 100.0    | 21.7   | 33.5       | 25.3      | 19.5  |

Normalized Mass of Pyrrhotite Across Fraction

| Mineral Name  | Combined    | +106um      | -106/+53um  | -53/+20um   | -20um       |
|---------------|-------------|-------------|-------------|-------------|-------------|
| Free Po       | 87.61       | 85.31       | 86.69       | 89.43       | 89.37       |
| Lib Po        | 8.48        | 10.88       | 9.54        | 6.70        | 6.30        |
| Po:Cp         | 0.39        | 0.33        | 0.65        | 0.18        | 0.26        |
| Po :Py        | 0.01        | 0.03        | 0.01        | 0.01        | 0.01        |
| Po: Pn        | 2.54        | 2.58        | 2.47        | 2.83        | 2.22        |
| Po :Fe-Oxides | 0.33        | 0.11        | 0.09        | 0.34        | 0.96        |
| Po: Sil       | 0.46        | 0.48        | 0.41        | 0.34        | 0.68        |
| Po: Pn :Py    | 0.01        | 0.00        | 0.01        | 0.01        | 0.01        |
| Complex       | 0.18        | 0.27        | 0.14        | 0.16        | 0.20        |
| Total         | 100.0       | 100.0       | 100.0       | 100.0       | 100.0       |
| Liberated     | 96.08428918 | 96.18944627 | 96.22585375 | 96.13184862 | 95.66256752 |





# Image Grid - Pyrrhotite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5046-JUN21

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Chalcopyrite Liberation**





# Absolute Mass of Chalcopyrite Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Cp               | 2.70     | 0.33   | 0.52       | 0.77      | 1.08  |
| Lib Cp                | 0.14     | 0.01   | 0.03       | 0.04      | 0.06  |
| Midds Cp              | 0.10     | 0.01   | 0.03       | 0.02      | 0.04  |
| Sub Midds Cp          | 0.09     | 0.03   | 0.03       | 0.02      | 0.01  |
| Locked Cp             | 0.07     | 0.02   | 0.03       | 0.01      | 0.01  |
| Total                 | 3.10     | 0.40   | 0.64       | 0.85      | 1.21  |
| Total (% in fraction) | 100.0    | 12.9   | 20.7       | 27.5      | 38.9  |

# Normalized Mass of Chalcopyrite Across Fraction

| Mineral Name | Combined | +106um | -106/+53um | -53/+20um | -20um |
|--------------|----------|--------|------------|-----------|-------|
| Free Cp      | 87.07    | 81.11  | 81.57      | 90.37     | 89.65 |
| Lib Cp       | 4.62     | 3.64   | 4.42       | 4.20      | 5.35  |
| Midds Cp     | 3.38     | 3.64   | 4.21       | 2.81      | 3.25  |
| Sub Midds Cp | 2.79     | 6.61   | 5.16       | 1.84      | 0.93  |
| Locked Cp    | 2.14     | 5.00   | 4.63       | 0.77      | 0.83  |
| Total        | 100.0    | 100.0  | 100.0      | 100.0     | 100.0 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

#### Chalcopyrite Association - SN Comp 30 Min 3.00 2.50 Mass (% Chalcopyrite) Mass (Chalcopyrite) 2.00 1.50 1.00 0.50 0.00 Combined +106um -106/+53um -53/+20um -20um Complex 0.05 0.03 0.01 0.00 0.01 Cp: Pn :Py 0.00 0.00 0.00 0.00 0.00 Cp: Sil 0.06 0.01 0.03 0.01 0.02 ■Cp :Fe-Oxides 0.00 0.00 0.00 0.00 0.00 Cp: Pn 0.03 0.00 0.01 0.02 0.01 Ср :Ру 0.00 0.00 0.00 0.00 0.00 ■Cp :Po 0.10 0.02 0.05 0.01 0.02 Lib Cp 0.14 0.04 0.06 0.01 0.03 Free Cp 2.70 0.33 0.52 0.77 1.08



# **Chalcopyrite Association**

Absolute Mass of Chalcopyrite Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Cp               | 2.70     | 0.33   | 0.52       | 0.77      | 1.08  |
| Lib Cp                | 0.14     | 0.01   | 0.03       | 0.04      | 0.06  |
| Cp :Po                | 0.10     | 0.02   | 0.05       | 0.01      | 0.02  |
| Ср :Ру                | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Cp: Pn                | 0.03     | 0.00   | 0.01       | 0.02      | 0.01  |
| Cp :Fe-Oxides         | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Cp: Sil               | 0.06     | 0.01   | 0.03       | 0.01      | 0.02  |
| Cp: Pn :Py            | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Complex               | 0.05     | 0.03   | 0.01       | 0.00      | 0.01  |
| Total                 | 3.10     | 0.40   | 0.64       | 0.85      | 1.21  |
| Total (% in fraction) | 100.0    | 12.9   | 20.7       | 27.5      | 38.9  |

Normalized Mass of Chalcopyrite Across Fraction

| Mineral Name  | Combined    | +106um      | -106/+53um  | -53/+20um   | -20um      |
|---------------|-------------|-------------|-------------|-------------|------------|
| Free Cp       | 87.07       | 81.11       | 81.57       | 90.37       | 89.65      |
| Lib Cp        | 4.62        | 3.64        | 4.42        | 4.20        | 5.35       |
| Ср :Ро        | 3.36        | 5.52        | 7.25        | 1.73        | 1.73       |
| Ср :Ру        | 0.04        | 0.00        | 0.00        | 0.03        | 0.08       |
| Cp: Pn        | 1.12        | 0.78        | 1.08        | 1.79        | 0.78       |
| Cp :Fe-Oxides | 0.14        | 0.50        | 0.12        | 0.02        | 0.11       |
| Cp: Sil       | 2.06        | 1.83        | 4.17        | 1.45        | 1.44       |
| Cp: Pn :Py    | 0.02        | 0.00        | 0.08        | 0.00        | 0.00       |
| Complex       | 1.58        | 6.62        | 1.31        | 0.42        | 0.86       |
| Total         | 100.0       | 100.0       | 100.0       | 100.0       | 100.0      |
| Liberated     | 87.07408896 | 81.11426127 | 81.57195984 | 90.37000945 | 89.6539388 |





Background
Pyrrhotite
Chalcopyrite
Chalcopyrite
Pentlandite
Other-Cu-Sulphides
Pyrite
Other\_Sulphides
Fe-Oxides
Carbonates
Silicates
Other

Image Grid - Pyrrhotite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5046-JUN21

Η 2.8 μm Η 3.0 μm

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Silicates Liberation**





# Absolute Mass of Silicates Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Sil              | 49.05    | 11.51  | 17.28      | 9.68      | 10.58 |
| Lib Sil               | 0.60     | 0.17   | 0.19       | 0.08      | 0.17  |
| Midds Sil             | 0.20     | 0.05   | 0.06       | 0.04      | 0.05  |
| Sub Midds Sil         | 0.08     | 0.01   | 0.04       | 0.01      | 0.01  |
| Locked Sil            | 0.06     | 0.02   | 0.02       | 0.01      | 0.02  |
| Total                 | 49.99    | 11.76  | 17.58      | 9.82      | 10.83 |
| Total (% in fraction) | 100.0    | 23.5   | 35.2       | 19.6      | 21.7  |

## Normalized Mass of Silicates Across Fraction

| Mineral Name  | Combined | +106um | -106/+53um | -53/+20um | -20um |
|---------------|----------|--------|------------|-----------|-------|
| Free Sil      | 98.12    | 97.92  | 98.25      | 98.59     | 97.68 |
| Lib Sil       | 1.20     | 1.41   | 1.08       | 0.77      | 1.56  |
| Midds Sil     | 0.41     | 0.45   | 0.37       | 0.37      | 0.47  |
| Sub Midds Sil | 0.15     | 0.08   | 0.21       | 0.14      | 0.14  |
| Locked Sil    | 0.12     | 0.13   | 0.09       | 0.12      | 0.16  |
| Total         | 100.0    | 100.0  | 100.0      | 100.0     | 100.0 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

#### **Silicates Association**



# Absolute Mass of Silicates Across Fraction

| Mineral Name          | Combined | +106um | -106/+53um | -53/+20um | -20um |
|-----------------------|----------|--------|------------|-----------|-------|
| Free Sil              | 49.05    | 11.51  | 17.28      | 9.68      | 10.58 |
| Lib Sil               | 0.60     | 0.17   | 0.19       | 0.08      | 0.17  |
| Sil : Cp              | 0.05     | 0.00   | 0.02       | 0.01      | 0.01  |
| Sil: Po               | 0.12     | 0.04   | 0.03       | 0.02      | 0.03  |
| Sil :Py               | 0.00     | 0.00   | 0.00       | 0.00      | 0.00  |
| Sil: Pn               | 0.01     | 0.00   | 0.00       | 0.00      | 0.01  |
| Sil :Fe-Oxides        | 0.11     | 0.02   | 0.05       | 0.02      | 0.02  |
| Complex               | 0.05     | 0.01   | 0.02       | 0.01      | 0.01  |
| Total                 | 49.99    | 11.76  | 17.58      | 9.82      | 10.83 |
| Total (% in fraction) | 100.0    | 23.5   | 35.2       | 19.6      | 21.7  |

# Normalized Mass of Silicates Across Fraction

| Mineral Name   | Combined   | +106um      | -106/+53um  | -53/+20um   | -20um       |
|----------------|------------|-------------|-------------|-------------|-------------|
| Free Sil       | 98.12      | 97.92       | 98.25       | 98.59       | 97.68       |
| Lib Sil        | 1.20       | 1.41        | 1.08        | 0.77        | 1.56        |
| Sil : Cp       | 0.09       | 0.03        | 0.12        | 0.08        | 0.12        |
| Sil: Po        | 0.24       | 0.33        | 0.15        | 0.24        | 0.27        |
| Sil :Py        | 0.00       | 0.00        | 0.00        | 0.01        | 0.01        |
| Sil: Pn        | 0.02       | 0.01        | 0.00        | 0.02        | 0.07        |
| Sil :Fe-Oxides | 0.22       | 0.17        | 0.29        | 0.19        | 0.19        |
| Complex        | 0.11       | 0.13        | 0.10        | 0.09        | 0.11        |
| Total          | 100.0      | 100.0       | 100.0       | 100.0       | 100.0       |
| Liberated      | 99.3183327 | 99.33643318 | 99.33167266 | 99.36137106 | 99.23798243 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Mineral Release Curves



| Sample                     |        |       |       |       |
|----------------------------|--------|-------|-------|-------|
| Fraction                   |        |       |       |       |
| Average Particle Size (µm) | 163.44 | 74.95 | 32.56 | 7.75  |
| Mineral Mass % 80% Lib     |        |       |       |       |
|                            |        |       |       |       |
| Pentlandite                | 42.51  | 35.33 | 68.04 | 82.61 |
| Pyrrhotite                 | 96.19  | 96.23 | 96.13 | 95.66 |
| Chalcopyrite               | 81.11  | 81.57 | 90.37 | 89.65 |
| Fe-Oxides                  | 96.51  | 92.93 | 93.51 | 90.77 |
| Silicates                  | 99.34  | 99.33 | 99.36 | 99.24 |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Cumulative Retained Grain Size Distribution



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Copper Grade vs. Recovery: SN Comp 30 Min



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Nickle Grade vs. Recovery: SN Comp 30 Min





# **QEMSCAN DATA**

prepared for:

# **North American Nickel**

Project 18559-01 MI5046-JUN21

July 15, 2021



Margot Aldis/Chris Gunning Mineralogist/Senior Mineralogist

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy) (METH# 8.11.1) used by SGS Minerals Services

SGS Canada

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel. (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Assay Reconciliation

| Sample        | P Comp 30 Min | S Comp 30 Min |
|---------------|---------------|---------------|
| Element       | -300/+3um     | -300/+3um     |
| Mg (QEMSCAN)  | 3.15          | 3.95          |
| Mg (Chemical) | 3.39          | 4.24          |
| S (QEMSCAN)   | 11.01         | 12.44         |
| S (Chemical)  | 10.40         | 11.90         |
| K (QEMSCAN)   | 1.32          | 0.33          |
| K (Chemical)  | 1.42          | 0.51          |
| Ca (QEMSCAN)  | 3.77          | 4.37          |
| Ca (Chemical) | 2.70          | 3.67          |
| Ti (QEMSCAN)  | 0.04          | 0.05          |
| Ti (Chemical) | 0.20          | 0.14          |
| Fe (QEMSCAN)  | 21.07         | 23.65         |
| Fe (Chemical) | 20.50         | 20.60         |
| Ni (QEMSCAN)  | 0.79          | 0.97          |
| Ni (Chemical) | 0.79          | 0.79          |
| Cu (QEMSCAN)  | 0.44          | 2.07          |
| Cu (Chemical) | 0.42          | 1.90          |



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# <u>Modals</u>

| Survey     |                    | 18559-01 / M          | I5046-JUN21   |  |  |  |
|------------|--------------------|-----------------------|---------------|--|--|--|
| Project    |                    | North American Nickel |               |  |  |  |
| Sample     |                    | P Comp 30 Min         | S Comp 30 Min |  |  |  |
| Fraction   |                    | -300/+3um             | -300/+3um     |  |  |  |
| Mass Size  | Distribution (%)   | 100.0                 | 100.0         |  |  |  |
| Calculated | ESD Particle Size  | 32                    | 34            |  |  |  |
|            |                    | Sample                | Sample        |  |  |  |
| Mineral    | Pyrrhotite         | 22.06                 | 23.91         |  |  |  |
| Mass (%)   | Chalcopyrite       | 1.26                  | 5.97          |  |  |  |
|            | Pentlandite        | 1.97                  | 2.47          |  |  |  |
|            | Pyrite/Marcasite   | 2.31                  | 0.22          |  |  |  |
|            | Other_Sulphides    | 0.03                  | 0.04          |  |  |  |
|            | Fe-Oxides          | 0.07                  | 1.59          |  |  |  |
|            | Other_Oxides       | 0.04                  | 0.05          |  |  |  |
|            | Chlorite/Clays     | 8.82                  | 10.26         |  |  |  |
|            | Biotite            | 14.80                 | 3.16          |  |  |  |
|            | Talc               | 0.12                  | 0.13          |  |  |  |
|            | Quartz             | 11.17                 | 7.31          |  |  |  |
|            | Plagioclase        | 16.43                 | 10.74         |  |  |  |
|            | Amphibole/Pvroxene | 19.14                 | 32.99         |  |  |  |
|            | K-Feldspar         | 1.22                  | 0.38          |  |  |  |
|            | Epidote            | 0.11                  | 0.31          |  |  |  |
|            | Titanite/sphene    | 0.06                  | 0.01          |  |  |  |
|            | Other Silicates    | 0.07                  | 0.19          |  |  |  |
|            | Carbonates         | 0.09                  | 0.13          |  |  |  |
|            | Apatite            | 0.19                  | 0.09          |  |  |  |
|            | Other              | 0.05                  | 0.07          |  |  |  |
|            | Total              | 100.00                | 100.00        |  |  |  |
| Mean       | Pvrrhotite         | 33                    | 34            |  |  |  |
| Grain Size | Chalcopyrite       | 25                    | 27            |  |  |  |
| by         | Pentlandite        | 17                    | 21            |  |  |  |
| Eroquonov  | Pvrite/Marcasite   | 25                    | 10            |  |  |  |
| Frequency  | Other Sulphides    | 9                     | 9             |  |  |  |
| (µm)       | Fe-Oxides          | 12                    | 34            |  |  |  |
|            | Other Oxides       | 14                    | 27            |  |  |  |
|            | Chlorite/Clavs     | 11                    | 17            |  |  |  |
|            | Biotite            | 25                    | 22            |  |  |  |
|            | Talc               | 9                     | 9             |  |  |  |
|            | Quartz             | 27                    | 30            |  |  |  |
|            | Plagioclase        | 29                    | 32            |  |  |  |
|            | Amphibole/Pyroxene | 29                    | 34            |  |  |  |
|            | K-Feldspar         | 15                    | 16            |  |  |  |
|            | Enidote            | 10                    | Q             |  |  |  |
|            | Titanite/snhone    | 10                    | 10            |  |  |  |
|            | Other Silicates    | 0                     | 12            |  |  |  |
|            | Carbonatos         | 3<br>25               | 10            |  |  |  |
|            | Apotito            | 20                    | 10            |  |  |  |
|            | Other              | 24<br>11              | 12            |  |  |  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

## Cu Deportment - Absolute



# Cu Deportment - Normalized



|                 | P Comp 30 | S Comp 30 |
|-----------------|-----------|-----------|
|                 | Min:      | Min:      |
| Chalcopyrite    | 99.60     | 99.81     |
| Other_Sulphides | 0.40      | 0.19      |
| Total           | 100.00    | 100.00    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Ni Deportment - Absolute



|                 | P Comp 30 | S Comp 30 |
|-----------------|-----------|-----------|
|                 | Min:      | Min:      |
| Pyrrhotite      | 0.11      | 0.12      |
| Pentlandite     | 0.67      | 0.84      |
| Other_Sulphides | 0.00      | 0.00      |
| Total           | 0.79      | 0.97      |

# Ni Deportment - Normalized



|                 | P Comp 30 | S Comp 30 |
|-----------------|-----------|-----------|
|                 | Min:      | Min:      |
| Pyrrhotite      | 14.04     | 12.37     |
| Pentlandite     | 85.47     | 87.29     |
| Other_Sulphides | 0.49      | 0.34      |
| Total           | 100.00    | 100.00    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pentlandite Liberation



# Absolute Mass of Pentlandite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Pn      | 0.78                      | 1.37                      |
| Lib Pn       | 0.16                      | 0.24                      |
| Midds Pn     | 0.23                      | 0.35                      |
| Sub Midds Pn | 0.35                      | 0.19                      |
| Locked Pn    | 0.44                      | 0.32                      |
| Total        | 1.97                      | 2.47                      |



| 20 -         |                         |                               |
|--------------|-------------------------|-------------------------------|
| 10 -         |                         |                               |
| 0 -          | P Comp 30 Min : -300/+; | 3um S Comp 30 Min : -300/+3um |
| Locked Pn    | 22.25                   | 13.07                         |
| Sub Midds Pn | 17.88                   | 7.83                          |
| Midds Pn     | 11.87                   | 14.01                         |
| ■Lib Pn      | 8.25                    | 9.74                          |
| Free Pn      | 39.75                   | 55.35                         |

## Normalized Mass of Pentlandite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Pn      | 39.75                     | 55.35                     |
| Lib Pn       | 8.25                      | 9.74                      |
| Midds Pn     | 11.87                     | 14.01                     |
| Sub Midds Pn | 17.88                     | 7.83                      |
| Locked Pn    | 22.25                     | 13.07                     |
| Total        | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Pentlandite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Pn       | 0.78                      | 1.37                      |
| Lib Pn        | 0.16                      | 0.24                      |
| Pn :Po        | 0.58                      | 0.67                      |
| Pn: Cp        | 0.00                      | 0.05                      |
| Pn :Py        | 0.00                      | 0.00                      |
| Pn :Fe-Oxides | 0.00                      | 0.00                      |
| Pn: Sil       | 0.23                      | 0.07                      |
| Pn: Cp :Py    | 0.00                      | 0.00                      |
| Complex       | 0.20                      | 0.07                      |
| Total         | 1.97                      | 2.47                      |



## Normalized Mass of Pentlandite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Pn       | 39.75                     | 55.35                     |
| Lib Pn        | 8.25                      | 9.74                      |
| Pn :Po        | 29.55                     | 26.95                     |
| Pn: Cp        | 0.19                      | 2.09                      |
| Pn :Py        | 0.14                      | 0.10                      |
| Pn :Fe-Oxides | 0.00                      | 0.03                      |
| Pn: Sil       | 11.78                     | 2.96                      |
| Pn: Cp :Py    | 0.00                      | 0.06                      |
| Complex       | 10.34                     | 2.73                      |
| Total         | 100.00                    | 100.00                    |



# Image Grid - Pentlandite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5046-JUN21



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Pyrrhotite Liberation**



# Absolute Mass of Pyrrhotite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Po      | 15.23                     | 20.17                     |
| Lib Po       | 4.04                      | 2.67                      |
| Midds Po     | 1.70                      | 0.61                      |
| Sub Midds Po | 0.77                      | 0.25                      |
| Locked Po    | 0.32                      | 0.20                      |
| Total        | 22.06                     | 23.91                     |



| 20 -         |                      |                                  |   |
|--------------|----------------------|----------------------------------|---|
| 20           |                      |                                  |   |
| 10 -         |                      |                                  |   |
| 0            |                      |                                  |   |
| 0 -          | P Comp 30 Min : -300 | 0/+3um S Comp 30 Min : -300/+3un | n |
| Locked Po    | 1.45                 | 0.82                             |   |
| Sub Midds Po | 3.47                 | 1.07                             |   |
| Midds Po     | 7.70                 | 2.56                             |   |
| Lib Po       | 18.32                | 11.17                            |   |
| Free Po      | 69.05                | 84.38                            |   |

## Normalized Mass of Pyrrhotite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Po      | 69.05                     | 84.38                     |
| Lib Po       | 18.32                     | 11.17                     |
| Midds Po     | 7.70                      | 2.56                      |
| Sub Midds Po | 3.47                      | 1.07                      |
| Locked Po    | 1.45                      | 0.82                      |
| Total        | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Pyrrhotite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Po       | 15.23                     | 20.17                     |
| Lib Po        | 4.04                      | 2.67                      |
| Po : Cp       | 0.07                      | 0.15                      |
| Po :Py        | 0.07                      | 0.02                      |
| Po: Pn        | 0.48                      | 0.41                      |
| Po :Fe-Oxides | 0.01                      | 0.02                      |
| Po: Sil       | 1.71                      | 0.33                      |
| Po: Pn :Py    | 0.01                      | 0.01                      |
| Complex       | 0.43                      | 0.12                      |
| Total         | 22.06                     | 23.91                     |





## Normalized Mass of Pyrrhotite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Po       | 69.05                     | 84.38                     |
| Lib Po        | 18.32                     | 11.17                     |
| Po : Cp       | 0.32                      | 0.64                      |
| Po :Py        | 0.34                      | 0.08                      |
| Po: Pn        | 2.18                      | 1.73                      |
| Po :Fe-Oxides | 0.02                      | 0.08                      |
| Po: Sil       | 7.76                      | 1.39                      |
| Po: Pn :Py    | 0.05                      | 0.03                      |
| Complex       | 1.96                      | 0.50                      |
| Total         | 100.00                    | 100.00                    |



# Background **Pyrrhotite** Chalcopyrite Pentlandite Other-Cu-Sulphides Other\_Sulphides Fe-Oxides Carbonates

# Image Grid - Pyrrhotite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5046-JUN21



and the second states and the second states and the second states are second states and the second states are s

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

## **Chalcopyrite Liberation**



# Absolute Mass of Chalcopyrite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Cp      | 0.94                      | 5.00                      |
| Lib Cp       | 0.09                      | 0.58                      |
| Midds Cp     | 0.09                      | 0.16                      |
| Sub Midds Cp | 0.05                      | 0.13                      |
| Locked Cp    | 0.08                      | 0.08                      |
| Total        | 1.26                      | 5.97                      |



## Normalized Mass of Chalcopyrite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Cp      | 74.81                     | 83.83                     |
| Lib Cp       | 7.15                      | 9.78                      |
| Midds Cp     | 7.29                      | 2.74                      |
| Sub Midds Cp | 4.25                      | 2.24                      |
| Locked Cp    | 6.50                      | 1.42                      |
| Total        | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Chalcopyrite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Cp       | 0.94                      | 5.00                      |
| Lib Cp        | 0.09                      | 0.58                      |
| Cp :Po        | 0.06                      | 0.11                      |
| Ср :Ру        | 0.00                      | 0.01                      |
| Cp: Pn        | 0.00                      | 0.06                      |
| Cp :Fe-Oxides | 0.00                      | 0.00                      |
| Cp: Sil       | 0.10                      | 0.12                      |
| Cp: Pn :Py    | 0.00                      | 0.00                      |
| Complex       | 0.06                      | 0.08                      |
| Total         | 1.26                      | 5.97                      |



# Normalized Mass of Chalcopyrite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Cp       | 74.81                     | 83.83                     |
| Lib Cp        | 7.15                      | 9.78                      |
| Ср :Ро        | 4.78                      | 1.87                      |
| Ср :Ру        | 0.12                      | 0.10                      |
| Cp: Pn        | 0.30                      | 0.99                      |
| Cp :Fe-Oxides | 0.00                      | 0.01                      |
| Cp: Sil       | 8.00                      | 2.07                      |
| Cp: Pn :Py    | 0.00                      | 0.05                      |
| Complex       | 4.84                      | 1.31                      |
| Total         | 100.00                    | 100.00                    |



# Image Grid - Pyrrhotite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5046-JUN21

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pyrite Liberation



# Absolute Mass of Pyrite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Py      | 0.89                      | 0.12                      |
| Lib Py       | 0.53                      | 0.01                      |
| Midds Py     | 0.61                      | 0.03                      |
| Sub Midds Py | 0.18                      | 0.02                      |
| Locked Py    | 0.10                      | 0.04                      |
| Total        | 2.31                      | 0.22                      |



| 20           |                        |                                |
|--------------|------------------------|--------------------------------|
| 10 -         |                        |                                |
| 0            | P Comp 30 Min : -300/+ | +3um S Comp 30 Min : -300/+3um |
| Locked Py    | 4.37                   | 19.03                          |
| Sub Midds Py | 7.84                   | 8.67                           |
| Midds Py     | 26.53                  | 11.74                          |
| Lib Py       | 22.80                  | 4.27                           |
| Free Py      | 38.47                  | 56.29                          |

# Normalized Mass of Pyrite Across Samples

| Mineral Name | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|--------------|---------------------------|---------------------------|
| Free Py      | 38.47                     | 56.29                     |
| Lib Py       | 22.80                     | 4.27                      |
| Midds Py     | 26.53                     | 11.74                     |
| Sub Midds Py | 7.84                      | 8.67                      |
| Locked Py    | 4.37                      | 19.03                     |
| Total        | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Pyrite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Py       | 0.89                      | 0.12                      |
| Lib Py        | 0.53                      | 0.01                      |
| Py :Po        | 0.07                      | 0.03                      |
| Py :Cp        | 0.00                      | 0.01                      |
| Py :Pn        | 0.00                      | 0.00                      |
| Py :Fe-Oxides | 0.00                      | 0.00                      |
| Py :Sil       | 0.73                      | 0.02                      |
| Complex       | 0.09                      | 0.02                      |
| Total         | 2.31                      | 0.22                      |



# Normalized Mass of Pyrite Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Py       | 38.47                     | 56.29                     |
| Lib Py        | 22.80                     | 4.27                      |
| Py :Po        | 3.11                      | 12.27                     |
| Py :Cp        | 0.15                      | 4.79                      |
| Py :Pn        | 0.10                      | 1.87                      |
| Py :Fe-Oxides | 0.00                      | 0.40                      |
| Py :Sil       | 31.45                     | 9.60                      |
| Complex       | 3.92                      | 10.51                     |
| Total         | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Silicates Liberation**



## Absolute Mass of Silicates Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Sil      | 68.54                     | 64.05                     |
| Lib Sil       | 1.42                      | 0.79                      |
| Midds Sil     | 1.18                      | 0.42                      |
| Sub Midds Sil | 0.52                      | 0.09                      |
| Locked Sil    | 0.29                      | 0.12                      |
| Total         | 71.95                     | 65.47                     |



| 20 -          |       |                     |      |       |                    |      |
|---------------|-------|---------------------|------|-------|--------------------|------|
| 10 -          |       |                     |      |       |                    |      |
| 0 -           |       |                     |      |       |                    |      |
|               | P Co  | omp 30 Min : -300/+ | -3um | S Co  | mp 30 Min : -300/+ | -3um |
| Locked Sil    |       | 0.41                |      |       | 0.19               |      |
| Sub Midds Sil |       | 0.72                |      |       | 0.13               |      |
| Midds Sil     |       | 1.64                |      |       | 0.64               |      |
| ■Lib Sil      | 1.98  |                     | 1.20 |       |                    |      |
| Free Sil      | 95.26 |                     |      | 97.84 |                    |      |

# Normalized Mass of Silicates Across Samples

| Mineral Name  | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|---------------|---------------------------|---------------------------|
| Free Sil      | 95.26                     | 97.84                     |
| Lib Sil       | 1.98                      | 1.20                      |
| Midds Sil     | 1.64                      | 0.64                      |
| Sub Midds Sil | 0.72                      | 0.13                      |
| Locked Sil    | 0.41                      | 0.19                      |
| Total         | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Silicates Across Samples

| Mineral Name   | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|----------------|---------------------------|---------------------------|
| Free Sil       | 68.54                     | 64.05                     |
| Lib Sil        | 1.42                      | 0.79                      |
| Sil : Cp       | 0.16                      | 0.12                      |
| Sil: Po        | 1.08                      | 0.25                      |
| Sil :Py        | 0.32                      | 0.01                      |
| Sil: Pn        | 0.16                      | 0.04                      |
| Sil :Fe-Oxides | 0.01                      | 0.04                      |
| Complex        | 0.26                      | 0.17                      |
| Total          | 71.95                     | 65.47                     |





## Normalized Mass of Silicates Across Samples

| Mineral Name   | P Comp 30 Min : -300/+3um | S Comp 30 Min : -300/+3um |
|----------------|---------------------------|---------------------------|
| Free Sil       | 95.26                     | 97.84                     |
| Lib Sil        | 1.98                      | 1.20                      |
| Sil : Cp       | 0.22                      | 0.18                      |
| Sil: Po        | 1.49                      | 0.38                      |
| Sil :Py        | 0.45                      | 0.01                      |
| Sil: Pn        | 0.22                      | 0.07                      |
| Sil :Fe-Oxides | 0.02                      | 0.05                      |
| Complex        | 0.37                      | 0.26                      |
| Total          | 100.00                    | 100.00                    |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Cumulative Retained Grain Size Distribution**



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Cumulative Retained Grain Size Distribution**


North American Nickel 18559-01 MI5046-JUN21

# High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

### Copper Grade vs. Recovery:



North American Nickel 18559-01 MI5046-JUN21

# High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

### Nickle Grade vs. Recovery:







# SMC TEST<sup>®</sup> REPORT

# **North American Nickel**

# **Tested by: SGS Minerals Services**

Ontario, Canada

Prepared by: Matt Weier JKTech Job No: 21007/P33 Testing Date: August 2021







# Contents

| 1     | Executive Summary                       | 5  |
|-------|-----------------------------------------|----|
| 1.1   | SMC Results Summary                     | 5  |
| 2     | Introduction                            | 7  |
| 3     | The SMC Test <sup>®</sup>               | 8  |
| 3.1   | Introduction                            | 8  |
| 3.2   | General Description and Test Background | 8  |
| 3.3   | The Test Procedure                      | 9  |
| 3.3.1 | Particle Selection Method               | 9  |
| 3.3.2 | Cut Core Method                         | 10 |
| 3.4   | SMC Test <sup>®</sup> Results           | 11 |
| 4     | References                              | 17 |
| 5     | Disclaimer                              | 18 |





# Appendices

| APPENDIX A. | SAG Circuit Specific Energy (SCSE)              | 20 |
|-------------|-------------------------------------------------|----|
| APPENDIX B. | Background And Use Of The SMC Test <sup>®</sup> | 24 |





# List Of Figures

| Figure 1 - Frequency Distribution of A*b in the JKTech Database                    | 6   |
|------------------------------------------------------------------------------------|-----|
| Figure 2 - Frequency Distribution of SCSE in the JKTech Database                   | 6   |
| Figure 3 – Relationship between Particle Size and A*b                              | 9   |
| Figure 4 – A Typical Set of Particles for Breakage (Particle Selection Method)     | .10 |
| Figure 5 – Orientations of Pieces for Breakage (Cut Core Method)                   | .11 |
| Figure 6 – Cumulative Distribution of DWi Values in SMCT Database                  | .14 |
| Figure 7 - Cumulative Distribution of Mia, Mih and Mic Values in the SMCT Database | .14 |
| Figure 8 - Frequency Distribution of A*b in the JKTech Database                    | .16 |
| Figure 9 - Frequency Distribution of SCSE in the JKTech Database                   | .16 |





# List Of Tables

| Table 1 - SMC Test <sup>®</sup> Results                             | 5  |
|---------------------------------------------------------------------|----|
| Table 2 – Parameters derived from the SMC Test <sup>®</sup> Results | 5  |
| Table 3 - SMC Test <sup>®</sup> Results                             | 12 |
| Table 4 – Parameters derived from the SMC Test <sup>®</sup> Results | 12 |
| Table 5 – Crusher Simulation Model Specific Energy Matrix           | 13 |
| Table 6 – Derived Values for A*b, ta and SCSE                       | 15 |



# 1 Executive Summary

# 1.1 SMC Results Summary

Table 1 - SMC Test® Results

| Sample      | DWi                       | DWi  | <i>Mi</i> F |      |      |      |
|-------------|---------------------------|------|-------------|------|------|------|
| Designation | (kWh/m <sup>3</sup> ) (%) |      | Mia         | Mih  | Mic  | SG   |
| HG COMP     | 11.3                      | 94.0 | 23.4        | 19.2 | 9.9  | 3.41 |
| LG COMP     | 13.2                      | 99.0 | 28.7        | 24.3 | 12.6 | 3.15 |
| P COMP      | 6.0                       | 41.0 | 15.3        | 11.1 | 5.7  | 3.13 |
| S COMP      | 2.5                       | 7.0  | 6.8         | 4.1  | 2.1  | 3.49 |
| SN COMP     | 2.6                       | 8.0  | 6.6         | 4.1  | 2.1  | 3.73 |

Table 2 – Parameters derived from the SMC Test® Results

| Sample<br>Designation | А    | b    | A*b   | ta   | SCSE (kWh/t) |
|-----------------------|------|------|-------|------|--------------|
| HG COMP               | 73.3 | 0.41 | 30.1  | 0.23 | 12.79        |
| LG COMP               | 99.5 | 0.24 | 23.9  | 0.20 | 14.31        |
| P COMP                | 68.1 | 0.77 | 52.4  | 0.43 | 9.45         |
| S COMP                | 74.3 | 1.89 | 140.4 | 1.04 | 6.23         |
| SN COMP               | 77.7 | 1.84 | 143.0 | 0.99 | 6.04         |





Figure 1 - Frequency Distribution of A\*b in the JKTech Database



Figure 2 - Frequency Distribution of SCSE in the JKTech Database



# 2 Introduction

SMC data for five samples from Phikwe Selebi Project were received from SGS Minerals Services on August 31, 2021, by JKTech for SMC test analysis. The samples were identified as HG COMP, LG COMP, P COMP, S COMP and SN COMP. The data were analysed to determine the JKSimMet and SMC Test comminution parameters. SMC Test results were forwarded to SMC Testing Pty Ltd for the analysis of the SMC Test data. Analysis and reporting were completed on September 01, 2021.

Some samples in this report have been previously reported as JKTech job 21007/P27. They have been included at SGS Minerals Services request.



# 3 The SMC Test<sup>®</sup>

## 3.1 Introduction

The standard JK Drop-Weight test provides ore specific parameters for use in the JKSimMet Mineral Processing Simulator software. In JKSimMet, these parameters are combined with equipment details and operating conditions to analyse and/or predict SAG/autogenous mill performance. The same test procedure also provides ore type characterisation for the JKSimMet crusher model.

The SMC Test was developed by Steve Morrell of SMC Testing Pty Ltd (SMCT). The test provides a cost effective means of obtaining these parameters, in addition to a range of other power-based comminution parameters, from drill core or in situations where limited quantities of material are available. The ore specific parameters have been calculated from the test results and are supplied to North American Nickel in this report as part of the standard procedure

# 3.2 General Description and Test Background

The SMC Test<sup>®</sup> was originally designed for the breakage characterisation of drill core and it generates a relationship between input energy (kWh/t) and the percent of broken product passing a specified sieve size. The results are used to determine the so-called JK Drop-Weight index (DWi), which is a measure of the strength of the rock when broken under impact conditions and has the units kWh/m<sup>3</sup>. The DWi is directly related to the JK rock breakage parameters A and b and hence can be used to estimate the values of these parameters as well as being correlated with the JK abrasion parameter -  $t_a$ . For crusher modelling the  $t_{10}$ - $E_{cs}$  matrix can also be derived. This is done by using the size-by-size  $A^*b$  values that are used in the SMC Test<sup>®</sup> data analysis (see below) to estimate the  $t_{10}$ - $E_{cs}$  values for each of the relevant size fractions in the crusher model matrix.

For power-based calculations, (see APPENDIX B), the SMC Test<sup>®</sup> provides the comminution parameters  $M_{ia}$ ,  $M_{ih}$  and  $M_{ic}$ .  $M_{ia}$  is the work index for the grinding of coarser particles (> 750  $\mu$ m) in tumbling mills such as autogenous (AG), semi-autogenous (SAG), rod and ball mills.  $M_{ih}$  is the work index for the grinding in High Pressure Grinding Rolls (HPGR) and  $M_{ic}$  for size reduction in conventional crushers.

The SMC Test<sup>®</sup> is a precision test, which uses particles that are either cut from drill core using a diamond saw to achieve close size replication or else selected from crushed material so that particle mass variation is controlled within a prescribed range. The particles are then broken at a number of prescribed impact energies. The high degree of control imposed on both the size of particles and the breakage energies used, means that the test is largely free of the repeatability problems associated with tumbling-mill based tests. Such tests usually suffer from variations in feed size (which is not closely controlled) and energy input, often assumed to be constant when in reality it can be highly variable (Levin, 1989).

The relationship between the DWi and the JK rock breakage parameters makes use of the size-by-size nature of rock strength that is often apparent from the results of full JK Drop-Weight tests. The effect is illustrated in Figure 3, which plots the normalized values of A\*b against particle size. This figure also shows how the gradient of these plots varies across the full range of rock types tested. In the case of a conventional JK Drop-Weight test, these values are effectively averaged and a mean value of A and b is reported. The SMC Test<sup>®</sup> uses a single size and makes use of relationships such as that shown in Figure 3 to predict the A and b of the particle size that has the same value as the mean for a JK full Drop-Weight test.





Figure 3 – Relationship between Particle Size and A\*b

# 3.3 The Test Procedure

In the SMC Test<sup>®</sup>, five sets of 20 particles are broken, each set at a different specific energy level, using a JK Drop-Weight tester. The breakage products are screened at a sieve size selected to provide a direct measurement of the  $t_{10}$  value.

The test calls for a prescribed target average volume for the particles, with the target being chosen to be equivalent to the mean volume of particles in one of the standard JK Drop-Weight test size fractions.

The rest height of the drop-head (gap) is recorded after breakage of each particle to allow for a correction to the drop energy. After breaking all 20 particles in a set, the broken product is sieved at an aperture size, one tenth of the original particle size. Thus, the percent passing mass gives a direct reading of the  $t_{10}$  value for breakage at that energy level.

There are two alternative methods of preparing the particle sets for breakage testing: the particle selection method and the cut core method. The particle selection method is the most commonly used as it is generally less time consuming. The cut core method requires less material, so tends to be used as a fallback method, only when necessary to cope with restricted sample availability.

# **3.3.1 Particle Selection Method**

For the particle selection method, the test is carried out on material in one of three alternative size fractions: -31.5+26.5, -22.4+19 or -16+13.2 mm. The largest size fraction is preferred but requires more material.

In the particle selection method, particles are chosen so that their individual masses lie within  $\pm 30\%$  of the target mass and the mean mass for each set of 20 lies within  $\pm 10\%$  of the target mass. A typical set of particles is shown in Figure 4.



# JKTech



Figure 4 – A Typical Set of Particles for Breakage (Particle Selection Method)

Before commencing breakage tests on the particles, the ore density is determined by first weighing a representative sample of particles in air and then in water.

### 3.3.2 Cut Core Method

The cut core method uses cut pieces of quartered (slivered) drill core. Whole core or half core can be used, but when received in this form it needs to be first quartered as a preliminary step in the procedure. Once quartered, any broken or tapered ends of the quartered lengths are cut, to square them off. Before the lengths of quartered core are cut to produce the pieces for testing, each one is weighed in air and then in water, to obtain a density measurement and a measure of its mass per unit length.

The size fraction targeted when the cut core method is used depends on the original core diameter. The target size fraction is selected to ensure that pieces of the correct volume will have "chunky" rather than "slabby" proportions.

Having measured the density of the core, the target volume can be translated into a target mass and with the average mass per unit length also known, an average cutting interval can be determined for the core.

Sufficient pieces of the quartered core are cut to generate 100 particles. These are then divided into the five sets of 20 and broken in the JK Drop-Weight tester at the five different energy levels. Within each set, the three possible orientations of the particles are equally represented (as far as possible, given that there are 20 particles). The orientations prescribed for testing are shown in Figure 5.





Figure 5 – Orientations of Pieces for Breakage (Cut Core Method)

The cut core method cannot be used for cores with diameters exceeding 70 mm, where the particle masses would be too large to achieve the highest prescribed energy level.

### 3.4 SMC Test<sup>®</sup> Results

The SMC Test<sup>®</sup> results for the HG COMP, LG COMP, P COMP, S COMP and SN COMP samples from Phikwe Selebi Project are given in Table 3. This table includes the average rock density and the DWi (Drop-Weight index) that is the direct result of the test procedure. The values determined for the  $M_{ia}$ ,  $M_{ih}$  and  $M_{ic}$  parameters developed by SMCT are also presented in this table. The  $M_{ia}$  parameter represents the coarse particle component (down to 750 µm), of the overall comminution energy and can be used together with the  $M_{ib}$  (fine particle component) to estimate the total energy requirements of a conventional comminution circuit. The use of these parameters is explained further in APPENDIX B. The derived estimates of parameters *A*, *b* and *t*<sub>a</sub> that are required for JKSimMet comminution modelling are given in Table 4.

Also included in the derived results are the SAG Circuit Specific Energy (SCSE) values. The SCSE value is derived from simulations of a "standard" circuit comprising a SAG mill in closed circuit with a pebble crusher. This allows *A\*b* values to be described in a more meaningful form. SCSE is described in detail in APPENDIX A.

In the case of the HG COMP, LG COMP, P COMP, S COMP and SN COMP samples from Phikwe Selebi Project, the *A* and *b* estimates are based on a correlation using the database of all results so far accumulated by SMCT.



#### Table 3 - SMC Test<sup>®</sup> Results

| Sample      | DWi                   | DWi | <i>Mi</i> Pai |      |      |      |  |
|-------------|-----------------------|-----|---------------|------|------|------|--|
| Designation | (kWh/m <sup>3</sup> ) | (%) | Mia           | Mih  | Mic  | SG   |  |
| HG COMP     | 11.31                 | 94  | 23.4          | 19.2 | 9.9  | 3.41 |  |
| LG COMP     | 13.20                 | 99  | 28.7          | 24.3 | 12.6 | 3.15 |  |
| P COMP      | 5.98                  | 41  | 15.3          | 11.1 | 5.7  | 3.13 |  |
| S COMP      | 2.48                  | 7   | 6.8           | 4.1  | 2.1  | 3.49 |  |
| SN COMP     | 2.61                  | 8   | 6.6           | 4.1  | 2.1  | 3.73 |  |

For more details on how the M<sub>ia</sub>, M<sub>ih</sub> and M<sub>ic</sub> parameters are derived and used, see APPENDIX B or go to the SMC Testing website at <u>http://www.smctesting.com/about</u>.

| Sample Designation | A    | b    | ta   | SCSE<br>(kWh/t) |
|--------------------|------|------|------|-----------------|
| HG COMP            | 73.3 | 0.41 | 0.23 | 12.79           |
| LG COMP            | 99.5 | 0.24 | 0.20 | 14.31           |
| P COMP             | 68.1 | 0.77 | 0.43 | 9.45            |
| S COMP             | 74.3 | 1.89 | 1.04 | 6.23            |
| SN COMP            | 77.7 | 1.84 | 0.99 | 6.04            |

Table 4 – Parameters derived from the SMC Test<sup>®</sup> Results

The influence of particle size on the specific comminution energy needed to achieve a particular  $t_{10}$  value can also be inferred from the SMC Test<sup>®</sup> results. The energy requirements for five particle sizes, each crushed to three different  $t_{10}$  values, are presented in Table 5.



| Sampla      | Particle Size (mm) |                                                                 |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------|--------------------|-----------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Designation |                    | 14.5                                                            |      |      | 20.6 |      |      | 28.9 |      |      | 41.1 |      |      | 57.8 |      |
|             |                    | t <sub>10</sub> Values (%) for Given Specific Energies in kWh/t |      |      |      |      |      |      |      |      |      |      |      |      |      |
|             | 10                 | 20                                                              | 30   | 10   | 20   | 30   | 10   | 20   | 30   | 10   | 20   | 30   | 10   | 20   | 30   |
| HG COMP     | 0.46               | 1.01                                                            | 1.66 | 0.40 | 0.88 | 1.45 | 0.35 | 0.76 | 1.26 | 0.30 | 0.66 | 1.09 | 0.27 | 0.58 | 0.96 |
| LG COMP     | 0.57               | 1.22                                                            | 1.94 | 0.50 | 1.06 | 1.69 | 0.44 | 0.92 | 1.48 | 0.38 | 0.80 | 1.27 | 0.33 | 0.70 | 1.12 |
| P COMP      | 0.27               | 0.59                                                            | 0.98 | 0.23 | 0.51 | 0.85 | 0.20 | 0.45 | 0.75 | 0.18 | 0.39 | 0.64 | 0.15 | 0.34 | 0.57 |
| S COMP      | 0.10               | 0.22                                                            | 0.36 | 0.09 | 0.19 | 0.31 | 0.08 | 0.16 | 0.27 | 0.07 | 0.14 | 0.23 | 0.06 | 0.12 | 0.20 |
| SN COMP     | 0.10               | 0.21                                                            | 0.35 | 0.08 | 0.18 | 0.30 | 0.07 | 0.16 | 0.26 | 0.06 | 0.14 | 0.23 | 0.06 | 0.12 | 0.20 |

#### Table 5 – Crusher Simulation Model Specific Energy Matrix

The SMC Test<sup>®</sup> database now contains over 40,000 test results on samples representing more than 1300 different deposits worldwide.

Around 99% of the DWi values lie in the range 0.5 to 14.0 kWh/m<sup>3</sup>, with soft ores being at the low end of this range and hard ores at the high end.

A cumulative graph of DWi values from the SMC Test<sup>®</sup> Database is shown in Figure 6 below. This graph can be used to compare the DWi of the material from Phikwe Selebi Project, with the entire population of ores in the SMCT database. The figures on the y-axis of the graph represent the percentages of all ores tested that are softer than the x-axis (DWi) value selected.







#### Figure 6 – Cumulative Distribution of DWi Values in SMCT Database

A further cumulative distribution graph is provided in Figure 7 to allow a comparison of the  $M_{ia}$ ,  $M_{ih}$  and  $M_{ic}$  values obtained for the Phikwe Selebi Project material, with the entire population of values for these parameters contained in the SMCT database.





The value of  $A^*b$ , which is also a measure of resistance to impact breakage, is calculated and presented in Table 6, which also gives a comparison to the population of samples in the JKTech database, with the percent of samples present in the JKTech database that are softer. Note that in contrast to the DWi, a high value of  $A^*b$  means that an ore is soft whilst a low value means that it is hard.



#### Table 6 – Derived Values for A\*b, ta and SCSE

| Sample      | А     | *b   | t     | a    | SCSE (kWh/t) |      |  |
|-------------|-------|------|-------|------|--------------|------|--|
| Designation | Value | %    | Value | %    | Value        | %    |  |
| HG COMP     | 30.1  | 85.0 | 0.23  | 89.4 | 12.79        | 94.6 |  |
| LG COMP     | 23.9  | 96.4 | 0.20  | 93.8 | 14.31        | 99.1 |  |
| P COMP      | 52.4  | 39.1 | 0.43  | 51.8 | 9.45         | 50.1 |  |
| S COMP      | 140.4 | 6.2  | 1.04  | 12.2 | 6.23         | 5.3  |  |
| SN COMP     | 143.0 | 6.0  | 0.99  | 13.3 | 6.04         | 4.2  |  |

In Figure 8 and Figure 9 below, histogram style frequency distributions for the *A\*b* values and for the SCSE values in the JKTech JKDW database are shown respectively.





Figure 8 - Frequency Distribution of A\*b in the JKTech Database



Figure 9 - Frequency Distribution of SCSE in the JKTech Database



# 4 References

Andersen, J. and Napier-Munn, T.J., 1988, "Power Prediction for Cone Crushers", Third Mill Operators' Conference, Aus.I.M.M (Cobar, NSW), May 1988, pp 103 - 106

Bailey, C., *et al*, 2009. "What Can Go Wrong in Comminution Circuit Design?", Proceedings of the Tenth Mill Operators' Conference, (Adelaide, SA), pp. 143–149

Bond, F.C., 1961. "Crushing and Grinding Calculations Parts I and II", British *Chemical Engineering*, Vol 6, Nos 6 and 8

Leung, K. 1987. "An Energy-Based Ore Specific Model for Autogenous and Semi-Autogenous Grinding Mills." Ph.D. Thesis. University of Queensland (unpublished)

Leung, K., Morrison, R.D. and Whiten, W.J., 1987. "An Energy Based Ore Specific Model for Autogenous and Semi-autogenous Grinding", Copper *87*, Vina del Mar, Vol. 2, pp 71 - 86

Levin, J., 1989. Observation on the bond standard grindability test, and a proposal for a standard grindability test for fine materials. SAIMM 89 (1), 13-21.

Morrell, S. 1996. "Power Draw of Wet Tumbling Mills and Its Relationship to Charge Dynamics - Parts I and II", *Transaction Inst. Min. Metall.* (Sect C: Mineral Process Extr. Metall.), 105, 1996, pp C43-C62

Morrell, S., 2004<sup>a</sup>. *Predicting the Specific Energy of Autogenous and Semi-autogenous Mills from Small Diameter Drill Core Samples*. Minerals Engineering, Vol 17/3 pp 447-451

Morrell, S., 2004<sup>b</sup>. An Alternative Energy-Size Relationship To That Proposed By Bond For The Design and Optimisation Of Grinding Circuits. International Journal of Mineral Processing, 74, 133-141.

Morrell, S., 2006. *Rock Characterisation for High Pressure Grinding Rolls Circuit Design*, Proc International Autogenous and Semi Autogenous Grinding Technology, Vancouver, vol IV pp 267-278.

Morrell,S., 2008, <u>A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency</u>, Minerals Engineering, Vol. 21, No. 3.

Shi, F. and Kojovic, T., 2007. Validation of a model for impact breakage incorporating particle size effect. Int. Journal of Mineral Processing, 82, 156-163.

Veillette, G., and Parker, B., 2005. Boddington Expansion Project Comminution Circuit Features and Testwork, Randol Gold Forum Proceedings.



# 5 Disclaimer

#### Warranty by JKTech

 a. JKTech will use its best endeavours to ensure that all documentation, data, recommendations, information, advice and reports ("Material"), provided by JKTech to the client ("Recipient"), is accurate at the time of providing it.

#### Extent of Warranty by JKTech

- b. JKTech does not make any representations as to any matter, fact or thing that is not expressly provided for in the Material.
- c. JKTech does not give any warranty, nor accept any liability in connection with the Material, except to the extent, if any, required by law or specifically provided in writing by JKTech to the Recipient.
- d. JKTech will not be liable to the Recipient for any claims relating to Material in any language other than in English.
- e. If, apart from this Disclaimer, any warranty would be implied whether by law, custom or otherwise, that warranty is to the full extent permitted by law excluded.
- f. The Recipient will promptly advise JKTech in writing of any losses, damages, compensation, liabilities, amounts, monetary and non-monetary costs and expenses ("Losses"), incurred or likely to be incurred by the Recipient or JKTech in connection with the Material, and any claims, actions, suits, demands or proceedings ("Liabilities") which the Recipient or JKTech may become liable in connection with the Material.

#### Indemnity and Release by the Recipient

- g. The Recipient indemnifies, releases, discharges and saves harmless, JKTech against any and all Losses and Liabilities, suffered or incurred by JKTech, whether under the law of contract, tort, statutory duty or otherwise as a result of:
  - i) the Recipient relying on the Material;
  - any liability for infringement of a third party's trade secrets, proprietary or confidential information, patents, registered designs, trademarks or names, copyright or other protected rights; and
  - iii) any act or omission of JKTech, any employee, agent or permitted sub-contractor of JKTech in connection with the Material.

#### Limit of Liability

- JKTech's liability to the Recipient in connection with the Material, whether under the law of contract, tort, statutory duty or otherwise, will be limited to the lesser of:
  - i) the total cost of the job; or
  - ii) JKTech providing amended Material rectifying the defect.

#### **Exclusion of Consequential Loss**

i. JKTech is not liable to the Recipient for any consequential, special or indirect loss (loss of revenue, loss of profits, business interruption, loss of opportunity and legal costs and disbursements), in connection with the Material whether under the law of contract, tort, statutory duty or otherwise.

#### Defects

j. The Recipient must notify JKTech within seven days of becoming aware of a defect in the Material. To the extent that the defect is caused by JKTech's negligence or breach of contract, JKTech may, at its discretion, rectify the defect.

#### Duration of Liability

k. After the expiration of one year from the date of first providing the Material to the client, JKTech will be discharged from all liability in connection with the Material. The Recipient (and persons claiming through or under the Recipient) will not be entitled to commence any action, claim or proceeding of any kind whatsoever after that date, against JKTech (or any employee of JKTech) in connection with the Material.

#### Contribution

 JKTech's liability to the Recipient for any loss or damage, whether under the law of contract, tort, statutory duty or otherwise will be reduced to the extent that an act or omission of the Recipient, its employees or agents, or a third party to whom the Recipient has disclosed the Material, contributed to the loss or damage.

#### Severability

m. If any provision of this Disclaimer is illegal, void, invalid or unenforceable for any reason, all other provisions which are self-sustaining and capable of separate enforcement will, to the maximum extent permitted by law, be and continue to be valid and enforceable.





Appendices

SMC Test® Report on Five Samples from Phikwe Selebi Project

North American Nickel



### **APPENDIX A.** SAG Circuit Specific Energy (SCSE)

For a little over 20 years, the results of JK Drop Weight tests and SMC tests have been reported in part as A, b and  $t_a$  parameters. A and b are parameters which describe the response of the ore under test to increasing levels of input energy in single impact breakage. A typical  $t_{10}$  v Ecs curve resulting from a Drop Weight test is shown in App Figure 1.



App Figure 1 – Typical t10 v Ecs curve

The curve shown in App Figure 1 is represented by an equation which is given in Equation 1.

$$t_{10} = A(1 - e^{-b.Ecs})$$
 Equation 1

The parameters A and b are generated by least squares fitting Equation 1 to the JK Drop Weight test data. The parameter  $t_a$  is generated from a tumbling test.

Both A and b vary with ore type but having two parameters describing a single ore property makes comparison difficult. For that reason the product of A and b, referred to as A\*b, which is related to the slope of the  $t_{10} - E_{cs}$  curve at the origin, has been universally accepted as the parameter which represents an ore's resistance to impact breakage.

The parameters A, b and  $t_a$  have no physical meaning in their own right. They are ore hardness parameters used by the AG/SAG mill model in JKSimMet which permits prediction of the product size distribution and the power draw of the AG/SAG mill for a given feed size distribution and feed rate. In a design situation, the dimensions of the mill are adjusted until the load in the mill reaches 25 % by volume when fed at the required feed rate. The model predicts the power draw under these conditions and from the power draw and throughput the specific energy is determined. The specific energy is mainly a function of the ore hardness (A and b values), the feed size and the dimensions of the mill (specifically the aspect ratio) as well as to a lesser extent the operating conditions such as ball load, mill speed, grate/pebble port size and pebble crusher activity.

There are two drawbacks to the approach of using A\*b as the single parameter to describe the impact resistance of a particular ore. The first is that A\*b is inversely related to impact resistance, which adds unnecessary complication. The second is that A\*b is related to impact resistance in a non-linear manner. As mentioned earlier this relationship and how it affects comminution machine performance





can only be predicted via simulation modelling. Hence to give more meaning to the A and b values and to overcome these shortcomings, JKTech Pty Ltd and SMC Testing Pty Ltd have developed a "standard" simulation methodology to predict the specific energy required for a particular tested ore when treated in a "Standard" circuit comprising a SAG mill in closed circuit with a pebble crusher. The flowsheet is shown in App Figure 2.



App Figure 2 – Flowsheet used for "Standard" AG/SAG circuit simulations

The specifications for the "standard" circuit are:

- SAG Mill
  - inside shell diameter to length ratio of 2:1 with 15 ° cone angles
  - ball charge of 15 %, 125 mm in diameter
  - total charge of 25 %
  - o grate open area of 7 %
  - o apertures in the grate are 100 % pebble ports with a nominal aperture of 56 mm
- Trommel
  - Cut Size of 12 mm
- Pebble Crusher
  - Closed Side Setting of 10 mm
  - Feed Size Distribution
    - $\circ$  F<sub>80</sub> from the t<sub>a</sub> relationship given in Equation 2

The feed size distribution is taken from the JKTech library of typical feed size distributions and is adjusted to meet the ore specific 80 % passing size predicted using the Morrell and Morrison (1996)  $F_{80}$  –  $t_a$  relationship for primary crushers with a closed side setting of 150 mm given in Equation 2.

$$F_{80} = 71.3 - 28.4 * \ln(t_a)$$
 Equation 2

Simulations were conducted with A\*b values ranging from 15 to 400, t<sub>a</sub> values ranging from 0.145 to 3.866 and solids SG values ranging from 2.1 to 4.5. For each simulation, the feed rate was adjusted until the total load volume in the SAG mill was 25 %. The predicted mill power draw and crusher power draw were combined and divided by the feed rate to provide the specific energy consumption. The results are shown in App Figure 3.





App Figure 3 – The relationship between A\*b and specific energy at varying SG for the "Standard" circuit.

It is of note that the family of curves representing the relationship between Specific energy and  $A^*b$  for the "standard" circuit is very similar to the specific energy –  $A^*b$  relationship for operating mills published in Veillette and Parker, 2005 and reproduced here in App Figure 4.



SMC Test® Report on Five Samples from Phikwe Selebi Project

North American Nickel

125

**JK**Tech





#### App Figure 4 – A\*b vs SAG kWh/t for operating AG/SAG mills (after Veillette and Parker, 2005).

Of course, the SCSE quoted value will not necessarily match the specific energy required for an existing or a planned AG/SAG mill due to differences in the many operating and design variables such as feed size distribution, mill dimensions, ball load and size and grate, trommel and pebble crusher configuration. The SCSE is an effective tool to compare in a relative manner the expected behaviour of different ores in AG/SAG milling in exactly the same way as the Bond laboratory ball mill work index can be used to compare the relative grindability of different ores in ball milling (Bond, 1961 and Rowland and Kjos, 1980). However the originally reported A and b parameters which match the SCSE will be still be required in JKSimMet simulations of a proposed circuit to determine the AG/SAG mill specific energy required for that particular grinding task. Guidelines for the use of JKSimMet for such simulations were given in Bailey *et al*, 2009.



### APPENDIX B. Background And Use Of The SMC Test®

### **B1** Introduction

The SMC Test<sup>®</sup> was developed to provide a range of useful comminution parameters through highly controlled breakage of rock samples. Drill core, even quartered small diameter core is suitable. Only relatively small quantities of sample are required and can be re-used to conduct Bond ball work index tests.

The results from conducting the SMC Test<sup>®</sup> are used to determine the so-called drop-weight index (DW<sub>i</sub>), which is a measure of the strength of the rock, as well as the comminution indices  $M_{ia}$ ,  $M_{ih}$  and  $M_{ic}$ . The SMC Test<sup>®</sup> also estimates the JK rock breakage parameters *A*, *b* and  $t_a$  as well as the JK crusher model's *t10-Ecs* matrix, all of which are generated as part of the standard report output from the test.

In conjunction with the Bond ball mill work index the DW<sub>i</sub> and the M<sub>i</sub> suite of parameters can be used to accurately predict the overall specific energy requirements of circuits containing:

- AG and SAG mills.
- Ball mills
- Rod mills
- Crushers
- High Pressure Grinding Rolls (HPGR)

The JK rock breakage parameters can be used to simulate crushing and grinding circuits using JKTech's simulator – JKSimMet.

### **B 2 Simulation Modelling and Impact Comminution Theory**

When a rock fragment is broken, the degree of breakage can be characterised by the " $t_{10}$ " parameter. The  $t_{10}$  value is the percentage of the original rock mass that passes a screen aperture one tenth of the original rock fragment size. This parameter allows the degree of breakage to be compared across different starting sizes.

The specific comminution energy (*Ecs*) has the units kWh/t and is the energy applied during impact breakage. As the impact energy is varied, so does the  $t_{10}$  value vary in response. Higher impact energies produce higher values of  $t_{10}$ , which of course means products with finer size distributions.

The equation describing the relationship between the  $t_{10}$  and *Ecs* is given below.

$$t_{10} = A(1 - e^{-b.Ecs})$$
 Equation 1

As can be seen from this equation, there are two rock breakage parameters A and b that relate the  $t_{10}$  (size distribution index) to the applied specific energy (*Ecs*). These parameters are ore specific and are normally determined from a full JK Drop-Weight test.

A typical plot of  $t_{10}$  vs *Ecs* from a JK Drop-Weight test is shown in App Figure 5. The relationship is characterised by the two-parameter equation above, where  $t_{10}$  is the dependent variable.





#### App Figure 5 - Typical t10 v Ecs Plot

The  $t_{10}$  can be thought of as a "fineness index" with larger values of  $t_{10}$  indicating a finer product size distribution. The value of parameter A is the limiting value of  $t_{10}$ . This limit indicates that at higher energies, little additional size reduction occurs as the *Ecs* is increased beyond a certain value. *A\*b* is the slope of the curve at 'zero' input energy and is generally regarded as an indication of the strength of the rock, lower values indicating a higher strength.

The SMC Test<sup>®</sup> is used to estimate the JK rock breakage parameters A and b by utilizing the fact that there is usually a pronounced (and ore specific) trend to decreasing rock strength with increasing particle size. This trend is illustrated in App Figure 6 which shows a plot of  $A^*b$  versus particle size for a number of different rock types.







#### App Figure 6 - Size Dependence of A\*b for a Range of Ore Types

In the case of a conventional JK Drop-Weight test these values are effectively averaged and a mean value of *A* and *b* is reported. The SMC Test<sup>®</sup> uses a single size and makes use of relationships such as that shown in App Figure 6 to predict the *A* and *b* of the particle size that has the same value as the mean for a full JK Drop-Weight test.

An example of this is illustrated in App Figure 7, where the observed values of the product  $A^*b$  are plotted against those predicted using the DWi. Each of the data points in App Figure 7 is a result from a different ore type within an orebody.



#### App Figure 7 - Predicted v Observed A\*b

The *A* and *b* parameters are used with Equation 1 and relationships such as illustrated in App Figure 6 to generate a matrix of *Ecs* values for a specific range of  $t_{10}$  values and particle sizes. This matrix is used in crusher modelling to predict the power requirement of the crusher given a feed and a product size specification (Napier-Munn et al (1996)).

The *A* and *b* parameters are also used in AG/SAG mill models, such as those in JKSimMet, for predicting how the rock will break inside the mill. From this description the models can predict what the throughput, power draw and product size distribution will be (Napier-Munn et al (1996)). Modelling also enables a detailed flowsheet to be built up of the comminution circuit response to changes in ore type. It also allows optimisation strategies to be developed to overcome any deleterious changes in circuit performance predicted from differences in ore type. These strategies can include both changes to how mills are operated (eg ball load, speed etc) and changes to feed size distribution through modification of blasting practices and primary crusher operation (mine-to-mill).

### **B 3 Power-Based Equations**

### B 3.1 General

The *DW*<sub>*i*</sub>, *M*<sub>*i*a</sub>, *M*<sub>*i*h and *M*<sub>*ic*</sub> parameters are used in so-called power-based equations which predict the specific energy of the associated comminution machines. The approach divides comminution equipment into three categories:</sub>





- Tumbling mills, eg AG, SAG, rod and ball mills
- Conventional reciprocating crushers, eg jaw, gyratory and cone
- HPGRs

Tumbling mills are described using 2 indices:  $M_{ia}$  and  $M_{ib}$ Crushers have one index:  $M_{ic}$ HPGRs have one index:  $M_{ih}$ 

For tumbling mills the 2 indices relate to "coarse" and "fine" ore properties plus an efficiency factor which represents the influence of a pebble crusher in AG/SAG mill circuits. "Coarse" in this case is defined as spanning the size range from a P80 of 750 microns up to the P80 of the product of the last stage of crushing or HPGR size reduction prior to grinding. "Fine" covers the size range from a P80 of 750 microns down to P80 sizes typically reached by conventional ball milling, ie about 45 microns. The choice of 750 microns as the division between "coarse" and "fine" particle sizes was determined during the development of the technique and was found to give the best overall results across the range of plants in SMCT's data base. Implicit in the approach is that distributions are parallel and linear in log-log space.

The work index covering grinding in tumbling mills of coarse sizes is labelled  $M_{ia}$ . The work index covering grinding of fine particles is labelled Mib (Morrell, 2008).  $M_{ia}$  values are provided as a standard output from a SMC Test<sup>®</sup> (Morrell, 2004a) whilst  $M_{ib}$  values can be determined using the data generated by a conventional Bond ball mill work index test ( $M_{ib}$  is NOT the Bond ball work index).  $M_{ic}$  and  $M_{ih}$  values are also provided as a standard output from a SMC Test<sup>®</sup> (Morrell, 2004a) whilst  $M_{ib}$  (Morrell, 2009).

The general size reduction equation is as follows (Morrell, 2004b):

$$W_i = M_i \cdot 4(x_2^{f(x_2)} - x_1^{f(x_1)})$$
 Equation 3

where

 $M_i$  = Work index related to the breakage property of an ore (kWh/tonne); for grinding from the product of the final stage of crushing to a P80 of 750 microns (coarse particles) the index is labelled Mia and for size reduction from 750 microns to the final product P80 normally reached by conventional ball mills (fine particles) it is labelled M<sub>ib</sub>. For conventional crushing M<sub>ic</sub> is used and for HPGRs Mih is used.

| Wi         | = | Specific comminution (kWh/tonne)              |            |  |  |  |  |  |
|------------|---|-----------------------------------------------|------------|--|--|--|--|--|
| <b>X</b> 2 | = | 80% passing size for the product (microns)    |            |  |  |  |  |  |
| <b>X</b> 1 | = | 80% passing size for the feed (microns)       |            |  |  |  |  |  |
| $f(x_j)$   | = | -(0.295 + <i>xi</i> /1000000) (Morrell, 2006) | Equation 4 |  |  |  |  |  |

For tumbling mills the specific comminution energy (*Wi*) relates to the power at the pinion or for gearless drives - the motor output. For HPGRs it is the energy inputted to the rolls, whilst for conventional crushers *Wi* relates to the specific energy as determined using the motor input power less the no-load power.

### B 3.2 Specific Energy Determination for Comminution Circuits

The total specific energy ( $W_T$ ) to reduce primary crusher product to final product size is given by:  $W_T = W_a + W_b + W_c + W_h + W_s$  Equation 5

where

| Wa    | = | specific energy to grind coarser particles in tumbling mills |
|-------|---|--------------------------------------------------------------|
| $W_b$ | = | specific energy to grind finer particles in tumbling mills   |
| $W_c$ | = | specific energy for conventional crushing                    |





 $W_h$  = specific energy for HPGRs

 $W_{\rm s}$  = specific energy correction for size distribution

Clearly only the *W* values associated with the relevant equipment in the circuit being studied are included in Equation 5.

### B 3.2.1 Tumbling mills

For coarse particle grinding in tumbling mills Equation 3 is written as:

$$W_a = K_1 M_{ia} \cdot 4(x_2^{f(x_2)} - x_1^{f(x_1)})$$
 Equation 6

where

 $K_1 = 1.0$  for all circuits that do not contain a recycle pebble crusher and 0.95 where circuits do have a pebble crusher

 $x_1$  =  $P_{80}$  in microns of the product of the last stage of crushing before grinding

 $x_2 = 750$  microns

*M<sub>ia</sub>* = Coarse ore work index and is provided directly by SMC Test<sup>®</sup>

For fine particle grinding Equation 3 is written as:

$$W_b = M_{ib} \cdot 4(x_3^{f(x_3)} - x_2^{f(x_2)})$$
 Equation 7

where

 $x_2 = 750$  microns

 $x_3 = P_{80}$  of final grind in microns

 $M_{ib}$  = Provided by data from the standard Bond ball work index test using the following equation (Morrell, 2006):

$$M_{ib} = \frac{18.18}{P_1^{0.295}(Gbp)(p_{80}^{f(p_{80})} - f_{80}^{f(f_{80})})}$$
Equation 8

| where       |   |                                                   |
|-------------|---|---------------------------------------------------|
| Mib         | = | fine ore work index (kWh/tonne)                   |
| $P_1$       | = | closing screen size in microns                    |
| Gbp         | = | net grams of screen undersize per mill revolution |
| <b>p</b> 80 | = | 80% passing size of the product in microns        |
| <b>f</b> 80 | = | 80% passing size of the feed in microns           |

Note that the Bond ball work index test should be carried out with a closing screen size which gives a final product P80 similar to that intended for the full scale circuit.

### **B 3.2.2 Conventional Crushers and HPGR**

Equation 3 for conventional crushers is written as:

 $W_c = S_c K_2 M_{ic} \cdot 4(x_2 f^{(x_2)} - x_1 f^{(x_1)})$  Equation 9

where

 $S_c$  = coarse ore hardness parameter which is used in primary and secondary crushing situations. It is defined by Equation 10 with K<sub>s</sub> set to 55.  $K_2$  = 1.0 for all crushers operating in closed circuit with a classifying screen. If the crusher is in open circuit, eg pebble crusher in a AG/SAG circuit, K<sub>2</sub> takes the value of 1.19.  $x_1$  =  $P_{80}$  in microns of the circuit feed  $x_2$  =  $P_{80}$  in microns of the circuit product





*M<sub>ic</sub>* = Crushing ore work index and is provided directly by SMC Test<sup>®</sup>

The coarse ore hardness parameter (S) makes allowance for the decrease in ore hardness that becomes significant in relatively coarse crushing applications such as primary and secondary cone/gyratory circuits. In tertiary and pebble crushing circuits it is normally not necessary and takes the value of unity. In full scale HPGR circuits where feed sizes tend to be higher than used in laboratory and pilot scale machines the parameter has also been found to improve predictive accuracy. The parameter is defined by Equation 10.

$$S = K_s(x_1, x_2)^{-0.2}$$
 Equation 10

where

 $K_s$  = machine-specific constant that takes the value of 55 for conventional crushers and 35 in the case of HPGRs

 $x_1 = P_{80}$  in microns of the circuit feed  $x_2 = P_{80}$  in microns of the circuit product

Equation 3 for HPGR's crushers is written as:

$$W_h = S_h K_3 M_{ih} \cdot 4(x_2^{f(x_2)} - x_1^{f(x_1)})$$
 Equation 11

where

 $S_h =$  coarse ore harness parameter as defined by Equation 10 and with K<sub>s</sub> set to 35  $K_3 =$  1.0 for all HPGRs operating in closed circuit with a classifying screen. If the HPGR is in open circuit, K3 takes the value of 1.19.  $x_1 =$  P<sub>80</sub> in microns of the circuit feed

 $x_2$  =  $P_{80}$  in microns of the circuit product

*M<sub>ih</sub>* = HPGR ore work index and is provided directly by SMC Test<sup>®</sup>

# B 3.2.3 Specific Energy Correction for Size Distribution (Ws)

Implicit in the approach described in this appendix is that the feed and product size distributions are parallel and linear in log-log space. Where they are not, allowances (corrections) need to be made. By and large, such corrections are most likely to be necessary (or are large enough to be warranted) when evaluating circuits in which closed circuit secondary/tertiary crushing is followed by ball milling. This is because such crushing circuits tend to produce a product size distribution which is relatively steep when compared to the ball mill circuit cyclone overflow. This is illustrated in App Figure 8, which shows measured distributions from an open and closed crusher circuit as well as a ball mill cyclone overflow. The closed circuit crusher distribution can be seen to be relatively steep compared with the open circuit crusher distribution and ball mill cyclone overflow. Also the open circuit distribution more closely follows the gradient of the cyclone overflow. If a ball mill circuit were to be fed two distributions, each with same P80 but with the open and closed circuit gradients in App Figure 8, the closed circuit distribution would require more energy to grind to the final P80. How much more energy is required is difficult to determine. However, for the purposes of this approach it has been assumed that the additional specific energy for ball milling is the same as the difference in specific energy between open and closed crushing to reach the nominated ball mill feed size. This assumes that a crusher would provide this energy. However, in this situation the ball mill has to supply this energy and it has a different (higher) work index than the crusher (ie the ball mill is less energy efficient than a crusher and has to input more energy to do the same amount of size reduction). Hence from Equation 9, to crush to the ball mill circuit feed size  $(x_2)$  in open circuit requires specific energy equivalent to:

$$W_c = 1.19 * M_{ic} \cdot 4(x_2^{f(x_2)} - x_1^{f(x_1)})$$
 Equation 12

For closed circuit crushing the specific energy is:





$$W_c = 1 * M_{ic} \cdot 4(x_2^{f(x_2)} - x_1^{f(x_1)})$$
 Equation 13

The difference between the two (Equation 12 and Equation 13) has to be provided by the milling circuit with an allowance for the fact that the ball mill, with its lower energy efficiency, has to provide it and not the crusher. This is what is referred to in Equation 5 as  $W_s$  and for the above example is therefore represented by:

$$W_{\rm s} = 0.19 * M_{ia} \cdot 4(x_2^{f(x_2)} - x_1^{f(x_1)})$$
 Equation 14

Note that in Equation 14  $M_{ic}$  has been replaced with  $M_{ia}$ , the coarse particle tumbling mill grinding work index.

In AG/SAG based circuits the need for W<sub>s</sub> appears to be unnecessary as App Figure 9 illustrates. Primary crusher feeds often have the shape shown in App Figure 9and this has a very similar gradient to typical ball mill cyclone overflows. A similar situation appears to apply with HPGR product size distributions, as illustrated in App Figure 10. Interestingly SMCT's data show that for HPGRs, closed circuit operation appears to require a lower specific energy to reach the same P80 as in open circuit, even though the distributions for open and closed circuit look to have almost identical gradients. Closer examination of the distributions in fact shows that in closed circuit the final product tends to have slightly less very fine material, which may account for the different energy requirements between the two modes of operation. It is also possible that recycled material in closed circuit is inherently weaker than new feed, as it has already passed through the HPGR previously and may have sustained micro-cracking. A reduction in the Bond ball mill work index as measured by testing HPGR products compared it to the Bond ball mill work index as measured by testing HPGR products compared it to the HPGR screen oversize.

It follows from the above arguments that in HPGR circuits, which are typically fed with material from closed circuit secondary crushers, a similar feed size distribution correction should also be applied. However, as the secondary crushing circuit uses such a relatively small amount of energy compared to the rest of the circuit (as it crushes to a relatively coarse size) the magnitude of size distribution correction is very small indeed – much smaller than the error associated with the technique - and hence may be omitted in calculations.



#### SMC Test® Report on Five Samples from Phikwe Selebi Project

North American Nickel





App Figure 8 – Examples of Open and Closed Circuit Crushing Distributions Compared with a Typical Ball Mill Cyclone Overflow Distribution



App Figure 9 – Example of a Typical Primary Crusher (Open and Circuit) Product Distribution Compared with a Typical Ball Mill Cyclone Overflow Distribution



App Figure 10 – Examples of Open and Closed Circuit HPGR Distributions Compared with a Typical Ball Mill Cyclone Overflow Distribution





## **B 3.2.4 Weakening of HPGR Products**

As mentioned in the previous section, laboratory experiments have been reported by various researchers in which the Bond ball work index of HPGR products is less than that of the feed. The amount of this reduction appears to vary with both material type and the pressing force used. Observed reductions in the Bond ball work index have typically been in the range 0-10%. In the approach described in this appendix no allowance has been made for such weakening. However, if HPGR products are available which can be used to conduct Bond ball work index tests on then *M*<sub>*ib*</sub> values obtained from such tests can be used in Equation 7. Alternatively the *M*<sub>*ib*</sub> values from Bond ball mill work index tests on HPGR feed material can be reduced by an amount that the user thinks is appropriate. Until more data become available from full scale HPGR/ball mill circuits it is suggested that, in the absence of Bond ball mill work index data on HPGR products, the *M*<sub>*ib*</sub> results from HPGR feed material are reduced by no more than 5% to allow for the effects of micro-cracking.

# **B 3.3 Validation**

# **B 3.3.1 Tumbling Mill Circuits**

The approach described in the previous section was applied to over 120 industrial data sets. The results are shown in App Figure 11. In all cases, the specific energy relates to the tumbling mills contributing to size reduction from the product of the final stage of crushing to the final grind. Data are presented in terms of equivalent specific energy at the pinion. In determining what these values were on each of the plants in the data base it was assumed that power at the pinion was 93.5% of the measured gross (motor input) power, this figure being typical of what is normally accepted as being reasonable to represent losses across the motor and gearbox. For gearless drives (so-called wrap-around motors) a figure of 97% was used.



App Figure 11 – Observed vs Predicted Tumbling Mill Specific Energy




# **B 3.3.2 Conventional Crushers**

Validation used 12 different crushing circuits (25 data sets), including secondary, tertiary and pebble crushers in AG/SAG circuits. Observed vs predicted specific energies are given in App Figure 12. The observed specific energies were calculated from the crusher throughput and the net power draw of the crusher as defined by:

Net Power = Motor Input Power – No Load Power Equation 15

No-load power tends to be relatively high in conventional crushers and hence net power is significantly lower than the motor input power. From examination of the 25 crusher data sets the motor input power was found to be on average 20% higher than the net power.



App Figure 12 – Observed vs Predicted Conventional Crusher Specific Energy

# B 3.3.3 HPGRs

Validation for HPGRs used data from 19 different circuits (36 data sets) including laboratory, pilot and industrial scale equipment. Observed vs predicted specific energies are given in App Figure 13. The data relate to HPGRs operating with specific grinding forces typically in the range 2.5-3.5 N/mm<sup>2</sup>. The observed specific energies relate to power delivered by the roll drive shafts. Motor input power for full scale machines is expected to be 8-10% higher.







App Figure 13 – Observed vs Predicted HPGR Specific Energy

### **B 4 WORKED EXAMPLES**

A SMC Test<sup>®</sup> and Bond ball work index test were carried out on a representative ore sample. The following results were obtained:

SMC Test<sup>®</sup>:  $M_{ia} = 19.4 \text{ kWh/t}$   $M_{ic} = 7.2 \text{ kWh/t}$   $M_{ih} = 13.9 \text{ kWh/t}$ Bond test carried out with a 150 micron closing screen:  $M_{ib} = 18.8 \text{ kWh/t}$ 

Three circuits are to be evaluated:

- SABC
- HPGR/ball mill
- Conventional crushing/ball mill

The overall specific grinding energy to reduce a primary crusher product with a  $P_{80}$  of 100 mm to a final product  $P_{80}$  of 106  $\mu$ m needs to be estimated.

# **B 4.1 SABC Circuit**

Coarse particle tumbling mill specific energy:

 $W_a = 0.95 * 19.4 * 4 * (750^{-(0.295+750/100000)} - 100000^{-(0.295+100000/100000)})$ = 9.6 kWh/t

SMC Test® Report on Five Samples from Phikwe Selebi Project





Fine particle tumbling mill specific energy:

$$W_b = 18.8 * 4 * \left(106^{-(0.295+106/100000)} - 750^{-(0.295+750/100000)}\right)$$
  
= 8.4 kWh/t

Pebble crusher specific energy:

In this circuit, it is assumed that the pebble crusher feed  $P_{80}$  is 52.5mm. As a rule of thumb this value can be estimated by assuming that it is 0.75 of the nominal pebble port aperture (in this case the pebble port aperture is 70mm). The pebble crusher is set to give a product  $P_{80}$  of 12mm. The pebble crusher feed rate is expected to be 25% of new feed tph.

 $W_{c} = 1.19 * 7.2 * 4 * \left(12000^{-(0.295+12000/1000000)} - 52500^{-(0.295+52500/1000000)}\right)$ 

- = 1.12 kWh/t when expressed in terms of the crusher feed rate
- = 1.12 \* 0.25 kWh/t when expressed in terms of the SABC circuit new feed rate
- = 0.3 kWh/t of SAG mill circuit new feed

Total net comminution specific energy:

 $W_T = 9.6 + 8.4 + 0.3 \text{ kWh/t}$ 

# **B 4.2 HPGR/Ball Milling Circuit**

In this circuit primary crusher product is reduced to a HPGR circuit feed  $P_{80}$  of 35 mm by closed circuit secondary crushing. The HPGR is also in closed circuit and reduces the 35 mm feed to a circuit product  $P_{80}$  of 4 mm. This is then fed to a closed circuit ball mill which takes the grind down to a  $P_{80}$  of 106 µm.

Secondary crushing specific energy:

$$W_c = 1 * 55 * (35000 * 100000)^{-0.2} * 7.2 * 4 * (35000^{-(0.295+35000/1000000)} - 100000^{-(0.295+100000/1000000)})$$
  
= 0.4 kWh/t

HPGR specific energy:

$$W_{h} = 1 * 35 * (4000 * 35000)^{-2} * 13.9 * 4 * (4000^{-(0.295+4000/1000000)} - 35000^{-(0.295+35000/1000000)})$$
  
= 2.4 kWh/t

Coarse particle tumbling mill specific energy:

$$W_a = 1*19.4*4*(750^{-(0.295+750/1000000)} - 4000^{-(0.295+4000/1000000)})$$
  
= 4.5 kWh/t

Fine particle tumbling mill specific energy:

$$W_b = 18.8 * 4 * \left(106^{-(0.295+106/100000)} - 750^{-(0.295+750/100000)}\right)$$
  
= 8.4 kWh/t

Total net comminution specific energy:

SMC Test® Report on Five Samples from Phikwe Selebi Project





 $W_T = 4.5 + 8.4 + 0.4 + 2.4$  kWh/t = 15.7 kWh/t

# **B 4.3 Conventional Crushing/Ball Milling Circuit**

In this circuit primary crusher product is reduced in size to  $P_{80}$  of 6.5 mm via a secondary/tertiary crushing circuit (closed). This is then fed to a closed circuit ball mill which grinds to a P80 of 106  $\mu$ m.

Secondary/tertiary crushing specific energy:

 $W_c = 1 * 7.2 * 4 * \left( 6500^{-(0.295 + 6500/1000000)} - 100000^{-(0.295 + 100000/1000000)} \right)$ = 1.7 kWh/t

Coarse particle tumbling mill specific energy :

$$W_a = 1*19.4*4*(750^{-(0.295+750/1000000)} - 6500^{-(0.295+6500/1000000)})$$
  
= 5.5 kWh/t

Fine particle tumbling mill specific energy:

 $W_b = 18.8 * 4 * \left( 106^{-(0.295+106/100000)} - 750^{-(0.295+750/100000)} \right)$ = 8.4 kWh/t

Size distribution correction;

$$W_{s} = 0.19 * 19.4 * 4 * (6500^{-(0.295+6500/1000000)} - 100000^{-(0.295+100000/1000000)})$$
  
= 0.9 kWh/t

Total net comminution specific energy:

$$W_T$$
 = 5.5 + 8.4 + 1.7 + 0.9 kWh/t  
= 16.5 kWh/t

| SMC Test - Test Definition Sheet                                        |                    |             | Version 2016 03 09 |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
|-------------------------------------------------------------------------|--------------------|-------------|--------------------|-----------------|--------------------------------------------|------------------|-----------------|------------------|---------------------------------|------------------|----------------|---------------------------------|-----------------|---------------|--|
|                                                                         |                    |             |                    |                 |                                            |                  |                 |                  | Target Par                      | ticle Sizes      |                |                                 |                 |               |  |
| Client:                                                                 | North American Nic | kel         |                    |                 |                                            | Та               | arget           |                  | <b>-</b> .                      | Screen           | Core Dian      | neter Range                     | Core Volu       | ume Range     |  |
| SGS Project Name or Number:                                             | 18559-01           |             |                    | DATA            | Diam (mm)                                  | Volume cu.       | Mass (a)        | 1/4 Core         | (mm)                            | Aperture         | Minimum        | Maximum                         | Minimum         | Maximum       |  |
| Client Sample Identification:                                           | SN COMP            |             |                    | ENTRY           |                                            | cm               | Wid55 (g)       | ;                | ()                              | (mm)             | (mm)           | (mm)                            | (cu. cm)        | (cu. cm)      |  |
| Deposit / Sample Source:                                                | Phikwe Selebi      |             |                    | FIELDS          | 36.3                                       | 2.1              | 7.8             | 8.1              | 1                               | 1.41             | 32.3           | 39.4                            | 1.38            | 2.83          |  |
| Operator:                                                               | SR                 |             |                    |                 | 41.9                                       | 3.6              | 13.3            | 10.3             | 1.5                             | 1.68             | 39.5           | 45.4                            | 2.83            | 4.78          |  |
| Test Date: ('dd/mm/yyyy')                                               | 5 July 2021        | Machine ID: |                    |                 | 48.4                                       | 6.0              | 22.4            | 13.1             | 1.5                             | 2                | 45.5           | 52.7                            | 4.78            | 8.18          |  |
| SGS Sample Number:                                                      |                    |             |                    |                 | 56.2                                       | 10.4             | 38.6            | 16.7             | 2                               | 2.4              | 52.8           | 60.3                            | 8.18            | 13.42         |  |
| Results for Test #                                                      | Eis (kWh/t)        | t10         | Mean Mass (g)      |                 | 63.8                                       | 16.5             | 61.4            | 20.6             | 2                               | 2.8              | 60.4           | 69.4                            | 13.42           | 22.33         |  |
| 1                                                                       | 0.251              | 28.008      | 60.740             |                 | 73.9                                       | 28.2             | 105.1           | 26.3             | 2.5                             | 3.35             | 69.5           | 79.9                            | 22.33           | 37.39         |  |
| 2                                                                       | 0.504              | 48.352      | 60.875             |                 | 84.8                                       | 46.6             | 173.6           | 32.9             | 3                               | 3.96             | 80.0           | 89.1                            | 37.39           | 55.76         |  |
| 3                                                                       | 1.010              | 64.033      | 60.625             |                 | * For cores of                             | less than 32 n   | nm diameter,    | please refer to  | JKTech for re                   | ecommendatio     | ins.           |                                 |                 |               |  |
| 4                                                                       | 1.618              | 74.861      | 60.635             |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
| 5                                                                       | 2.218              | 76.009      | 60.635             |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
| Mean SG                                                                 | 3.727              |             |                    |                 | Click on this l                            | button to go t   | to the Pre Sta  | rt Check List.   |                                 |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    |                 | Print this out                             | and complet      | e it before yo  | u begin drop-t   | esting.                         |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    |                 |                                            | 1                | 1               | T                | T                               | T                | 1              | T                               | T               | 1             |  |
| Test Laboratory:                                                        | SGS Lakefield      |             |                    |                 | Click on this l                            | button if you    | wish to see th  | e full SMC tes   | t procedure.                    |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    |                 | This is now a                              | vailable via th  | ie internet.    |                  |                                 |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
| Language:                                                               |                    |             | English            | Note: If the te | est is to be carrie                        | d out on brok    | en rock piece   | s, the largest s | creen size ra                   | nge possible s   | hould be sele  | cted, given th                  | e top size of   | the sample    |  |
|                                                                         |                    |             |                    | size range, t   | ig with and the q<br><b>1en vou should</b> | switch to us     | ing the next    | lve doubts ab    | ae.                             | ing sumclent     | material to y  | ield 100 part                   | icles from th   | e selected    |  |
| Starting Material is:                                                   |                    |             | Broken Rock        |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    |                 |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
| Tests to be carried out on:                                             |                    |             | Broken Rock        | Stop 4          |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
|                                                                         |                    |             |                    | Step 1.         |                                            |                  |                 |                  |                                 |                  |                |                                 |                 |               |  |
| Select screen size range to be targeted:                                |                    |             | -31.5+26.5 mm      | There are two   | methods that ca                            | an be used in    | the SMC test    | to generate the  | e particles for                 | breakage tes     | ting. The part | icles can eithe                 | er be cut piec  | es of         |  |
| (Select coarsest screen size possible, given the sample top size and an | mount available.)  |             |                    | quartered cor   | e or crushed pied                          | ces of either re | ock or core.    | The two metho    | ds are consid                   | ered to be of e  | equal accurac  | y, so which or                  | ne is used is a | a matter of   |  |
|                                                                         |                    |             |                    | method you n    | ormally need abo                           | out 20 kg, whi   | ich is generall | y more than re   | quired for the                  | cut core meth    | nod, except wi | nen you are d                   | ealing with th  | e largest     |  |
|                                                                         |                    |             |                    | diameter core   | s.                                         |                  | 5               | ,                |                                 |                  | <i>,</i> ,     | ,                               | 5               | 5             |  |
| Corresponding Nominal Core Diameter Targeted:                           |                    |             | 63.8 mm            | When using th   | o onloh and nar                            | tiala aalaat mu  | othod you oh    | ould oot the "T  | aata ta ha aar                  | riad out on " d  | ron down to "  | Brokon Book                     | and then cel    | oot o oizo    |  |
|                                                                         |                    |             |                    | range from th   | e "Select screen                           | size to be tar   | aeted:" drop-o  | down. The idea   | esis io de car<br>al size rande | if there is plen | tv of material | available is th                 | e largest (ie.  | -31.5+26.5    |  |
| Estimate of Density for Sample Requirements:                            |                    |             | 2.7                | mm). Howev      | er, the test is mo                         | st commonly of   | carried out on  | -22.4+19 mm      | material and                    | this is quite a  | cceptable also | <ol> <li>If sample q</li> </ol> | uantity is ver  | y limited you |  |
|                                                                         |                    |             |                    | may need to s   | elect the finest s                         | ize range (-16   | 6+13.2 mm).     | Although the r   | esults are stil                 | l acceptable, t  | he test accura | cy will not be                  | quite as good   | d using this  |  |
| Approximate Length of Starting Material Required:                       |                    |             | Not Applicable     | size range, so  | it should only be                          | e useo as a la   | ist resort whe  | n inere is not e | nougn sampl                     | e to complete    | the test on a  | coarser size fi                 | raction.        |               |  |

| SMC Test - Test Definition Sheet                                       |                    |             | Version 2016 03 09 |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
|------------------------------------------------------------------------|--------------------|-------------|--------------------|-----------------|--------------------------------------------|-----------------------------------|-------------------------------|-------------------------|-----------------|---------------------------------|-----------------------------------|-----------------|-----------------|---------------|---|
|                                                                        |                    |             |                    |                 |                                            |                                   |                               |                         | Target Par      | ticle Sizes                     |                                   |                 |                 |               |   |
| Client:                                                                | North American Nic | kel         |                    |                 |                                            | Та                                | arget                         |                         | <b>-</b> .      | Screen                          | Core Dian                         | neter Range     | Core Volu       | ume Range     |   |
| SGS Project Name or Number:                                            | 18559-01           |             |                    | DATA            | Diam. (mm)                                 | Volume cu.                        | Mass (g)                      | 1/4 Core<br>Length (mm) | (mm)            | Aperture                        | Minimum                           | Maximum         | Minimum         | Maximum       |   |
| Client Sample Identification:                                          | S COMP             |             |                    | ENTRY           | - Diam. (1111)                             | cm                                | wass (g)                      | Longar (mm)             | ()              | (mm)                            | (mm)                              | (mm)            | (cu. cm)        | (cu. cm)      |   |
| Deposit / Sample Source:                                               | Phikwe Selebi      |             |                    | FIELDS          | 36.3                                       | 2.1                               | 7.3                           | 8.1                     | 1               | 1.41                            | 32.3                              | 39.4            | 1.38            | 2.83          |   |
| Operator:                                                              | SR                 |             |                    |                 | 41.9                                       | 3.6                               | 12.4                          | 10.3                    | 1.5             | 1.68                            | 39.5                              | 45.4            | 2.83            | 4.78          |   |
| Test Date: ('dd/mm/yyyy')                                              | 5 July 2021        | Machine ID: |                    |                 | 48.4                                       | 6.0                               | 20.9                          | 13.1                    | 1.5             | 2                               | 45.5                              | 52.7            | 4.78            | 8.18          |   |
| SGS Sample Number:                                                     |                    |             |                    |                 | 56.2                                       | 10.4                              | 36.1                          | 16.7                    | 2               | 2.4                             | 52.8                              | 60.3            | 8.18            | 13.42         |   |
| Results for Test #                                                     | Eis (kWh/t)        | t10         | Mean Mass (g)      |                 | 63.8                                       | 16.5                              | 57.4                          | 20.6                    | 2               | 2.8                             | 60.4                              | 69.4            | 13.42           | 22.33         |   |
| 1                                                                      | 0.251              | 30.802      | 55.710             |                 | 73.9                                       | 28.2                              | 98.3                          | 26.3                    | 2.5             | 3.35                            | 69.5                              | 79.9            | 22.33           | 37.39         |   |
| 2                                                                      | 0.503              | 42.069      | 55.740             |                 | 84.8                                       | 46.6                              | 162.3                         | 32.9                    | 3               | 3.96                            | 80.0                              | 89.1            | 37.39           | 55.76         |   |
| 3                                                                      | 1.009              | 65.024      | 55.695             |                 | * For cores of                             | less than 32 n                    | nm diameter,                  | please refer to         | JKTech for re   | ecommendatio                    | ins.                              |                 |                 |               |   |
| 4                                                                      | 1.718              | 68.911      | 55.555             |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
| 5                                                                      | 2.416              | 75.952      | 55.630             |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
| Mean SG                                                                | 3.485              |             |                    |                 | Click on this l                            | button to go t                    | to the Pre Sta                | rt Check List.          |                 |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             |                    |                 | Print this out                             | and complet                       | e it before yo                | u begin drop-t          | esting.         |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             |                    |                 |                                            | 1                                 | 1                             | T                       | T               | 1                               | 1                                 | T               | T               | 1             |   |
| Test Laboratory:                                                       | SGS Lakefield      |             |                    |                 | Click on this l                            | button if you                     | wish to see th                | e full SMC tes          | t procedure.    |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             |                    |                 | This is now a                              | vailable via th                   | ie internet.                  |                         |                 |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             |                    |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
| Language:                                                              |                    |             | English            | Note: If the te | est is to be carrie                        | d out on brok                     | en rock piece                 | s, the largest s        | creen size ra   | nge possible s                  | hould be sele                     | cted, given th  | e top size of   | the sample    |   |
|                                                                        |                    |             |                    | size range, th  | ig with and the q<br><b>1en vou should</b> | switch to us                      | ing the next                  | lve doubts ab           | ae.             | ing sumicient                   | material to y                     | ield 100 part   | icles from th   | e selected    |   |
| Starting Material is:                                                  |                    |             | Broken Rock        |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             |                    |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             | Davis Davis        |                 |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
| lests to be carried out on:                                            |                    |             | Broken Rock        | Stop 1:         |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
|                                                                        |                    |             |                    | Step 1:         |                                            |                                   |                               |                         |                 |                                 |                                   |                 |                 |               |   |
| Select screen size range to be targeted:                               |                    |             | -31.5+26.5 mm      | There are two   | methods that ca                            | an be used in                     | the SMC test                  | to generate the         | e particles for | breakage test                   | ting. The part                    | icles can eithe | er be cut piec  | es of         |   |
| (Select coarsest screen size possible, given the sample top size and a | mount available.)  |             |                    | quartered cor   | e or crushed pied                          | ces of either re                  | ock or core.                  | The two metho           | ds are consid   | ered to be of e                 | equal accurac                     | y, so which or  | ne is used is a | a matter of   |   |
|                                                                        |                    |             |                    | method you n    | ormally need abo                           | out 20 kg, whi                    | ich is generall               | y more than re          | quired for the  | cut core meth                   | nod, except wi                    | hen you are d   | ealing with th  | e largest     |   |
|                                                                        |                    |             |                    | diameter core   | s.                                         |                                   | °                             |                         |                 |                                 |                                   | ,               |                 | •             |   |
| Corresponding Nominal Core Diameter Targeted:                          |                    |             | 63.8 mm            | When using th   | e crush and par                            | ticle select m                    | ethod you sh                  | ould set the "T         | ests to be car  | ried out on:" d                 | ron-down to "                     | Broken Rock"    | and then sel    | oct a sizo    |   |
|                                                                        |                    |             |                    | range from the  | e "Select screen                           | size to be tar                    | geted:" drop-o                | lown. The idea          | al size range   | if there is plen                | ty of material                    | available is th | e largest (ie.  | -31.5+26.5    |   |
| Estimate of Density for Sample Requirements:                           |                    |             | 2.7                | mm). Howeve     | er, the test is mo                         | st commonly                       | carried out on                | -22.4+19 mm             | material and    | this is quite a                 | cceptable also                    | o. If sample q  | uantity is ver  | y limited you |   |
| Anneximate Longth of Starting Material Description                     |                    |             | Not Applicable     | may need to s   | elect the finest s                         | size range (-16<br>e used as a la | 6+13.2 mm).<br>ist resort whe | Although the r          | esults are stil | acceptable, ti<br>e to complete | he test accura<br>the test on a r | cy will not be  | quite as good   | d using this  | L |
| Approximate Length of Starting Material Required:                      |                    |             | NOT APPIICADIE     | Size range, se  |                                            | - 4504 45 A IA                    | St. Coort Wile                |                         | məagn aanıpi    | o to complete                   |                                   | 5541361 3ize II |                 |               | 1 |

| SMC Test - Test Definition Sheet                                       |                    |             | Version 2016 03 09 |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
|------------------------------------------------------------------------|--------------------|-------------|--------------------|----------------------------------------------------------------------|---------------------|---------------------------------|------------------------------|------------------|-----------------|------------------|-----------------|-----------------------------------------------------|-----------------|---------------|--|
|                                                                        |                    |             |                    |                                                                      |                     |                                 |                              |                  | Target Par      | ticle Sizes      |                 |                                                     |                 |               |  |
| Client:                                                                | North American Nic | kel         |                    |                                                                      |                     | Та                              | arget                        |                  | <b>-</b> .      | Screen           | Core Diam       | neter Range                                         | Core Volu       | ume Range     |  |
| SGS Project Name or Number:                                            | 18559-01           |             |                    | DATA                                                                 | Diam (mm)           | Volume cu.                      | Mass (a)                     | 1/4 Core         | (mm)            | Aperture         | Minimum         | Maximum                                             | Minimum         | Maximum       |  |
| Client Sample Identification:                                          | P COMP             |             |                    | ENTRY                                                                | Diam (init)         | cm                              | wass (g)                     | Longar (iiiii)   | ()              | (mm)             | (mm)            | (mm)                                                | (cu. cm)        | (cu. cm)      |  |
| Deposit / Sample Source:                                               | Phikwe Selebi      |             |                    | FIELDS                                                               | 36.3                | 2.1                             | 6.6                          | 8.1              | 1               | 1.41             | 32.3            | 39.4                                                | 1.38            | 2.83          |  |
| Operator:                                                              | SR                 |             |                    |                                                                      | 41.9                | 3.6                             | 11.1                         | 10.3             | 1.5             | 1.68             | 39.5            | 45.4                                                | 2.83            | 4.78          |  |
| Test Date: ('dd/mm/yyyy')                                              | 5 July 2021        | Machine ID: |                    |                                                                      | 48.4                | 6.0                             | 18.8                         | 13.1             | 1.5             | 2                | 45.5            | 52.7                                                | 4.78            | 8.18          |  |
| SGS Sample Number:                                                     |                    |             |                    |                                                                      | 56.2                | 10.4                            | 32.5                         | 16.7             | 2               | 2.4              | 52.8            | 60.3                                                | 8.18            | 13.42         |  |
| Results for Test #                                                     | Eis (kWh/t)        | t10         | Mean Mass (g)      |                                                                      | 63.8                | 16.5                            | 51.5                         | 20.6             | 2               | 2.8              | 60.4            | 69.4                                                | 13.42           | 22.33         |  |
| 1                                                                      | 0.250              | 11.900      | 52.185             |                                                                      | 73.9                | 28.2                            | 88.3                         | 26.3             | 2.5             | 3.35             | 69.5            | 79.9                                                | 22.33           | 37.39         |  |
| 2                                                                      | 0.500              | 22.092      | 52.190             |                                                                      | 84.8                | 46.6                            | 145.8                        | 32.9             | 3               | 3.96             | 80.0            | 89.1                                                | 37.39           | 55.76         |  |
| 3                                                                      | 1.003              | 35.812      | 52.195             |                                                                      | * For cores of      | less than 32 n                  | nm diameter,                 | please refer to  | JKTech for re   | ecommendatio     | ns.             |                                                     |                 |               |  |
| 4                                                                      | 1,784              | 51.987      | 52.105             |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| 5                                                                      | 2.567              | 58.161      | 52.250             |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| Mean SG                                                                | 3.130              |             |                    |                                                                      | Click on this I     | button to go t                  | to the Pre Sta               | rt Check List.   |                 |                  |                 |                                                     |                 |               |  |
|                                                                        |                    |             |                    |                                                                      | Print this out      | and complet                     | e it before yo               | u begin drop-t   | esting.         |                  |                 |                                                     |                 |               |  |
|                                                                        |                    |             |                    |                                                                      |                     | 1                               | 1                            | 1                | 1               | 1                | 1               | 1                                                   | 1               | 1             |  |
| Test Laboratory:                                                       | SGS Lakefield      |             |                    | Click on this button if you wish to see the full SMC test procedure. |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| Test Laboratory.                                                       |                    |             |                    |                                                                      | This is now a       | vailable via th                 | ne internet.                 |                  |                 |                  |                 |                                                     |                 |               |  |
|                                                                        |                    |             |                    |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| Language:                                                              |                    |             | English            | Note: If the te                                                      | st is to be carrie  | d out on brok                   | en rock piece                | s, the largest s | creen size ra   | nge possible s   | hould be sele   | cted, given th                                      | e top size of   | the sample    |  |
|                                                                        |                    |             |                    | you are dealin                                                       | g with and the q    | uantity availat                 | ble. If you ha               | ave doubts ab    | out there be    | ing sufficient   | material to y   | ield 100 part                                       | icles from th   | e selected    |  |
| Starting Material in:                                                  |                    |             | Brokon Book        | Size runge, u                                                        | ien you should      | Switch to us                    | ing the next                 | iower size fun   | ye.             |                  |                 |                                                     |                 |               |  |
| Starting Material IS.                                                  |                    |             | DIOKEITROCK        |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
|                                                                        |                    |             |                    |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| Tests to be carried out on:                                            |                    |             | Broken Rock        |                                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
|                                                                        |                    |             |                    | Step 1:                                                              |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| Select screen size range to be targeted:                               |                    |             | -31 5+26 5 mm      | There are two                                                        | methods that ca     | an be used in                   | the SMC test                 | to generate the  | e particles for | breakage test    | ting. The part  | icles can eith                                      | er be cut piec  | es of         |  |
| (Select coarsest screen size possible given the sample top size and am | iount available )  |             | -51.5120.51111     | quartered cor                                                        | e or crushed pied   | ces of either re                | ock or core.                 | The two metho    | ds are consid   | ered to be of e  | equal accurac   | y, so which or                                      | ne is used is a | a matter of   |  |
| (one of the of the probable, given the cample top the and and          |                    |             |                    | preference. T                                                        | he crush and pa     | rticle select m                 | nethod is prob               | ably faster, so  | may be the p    | referred meth    | od when there   | is plenty of s                                      | ample. To u     | se this       |  |
|                                                                        |                    |             |                    | diameter core                                                        | ormally need abo    | out 20 kg, whi                  | ich is generali              | y more than re   | quired for the  | cut core metr    | iod, except wr  | nen you are d                                       | ealing with th  | e largest     |  |
|                                                                        |                    |             |                    | diameter cores.                                                      |                     |                                 |                              |                  |                 |                  |                 |                                                     |                 |               |  |
| Corresponding Nominal Core Diameter Targeted:                          |                    |             | 63.8 mm            | When using the                                                       | ne crush and par    | ticle select me                 | ethod, you sh                | ould set the "T  | ests to be car  | ried out on:" d  | rop-down to "   | Broken Rock"                                        | and then sel    | ect a size    |  |
| Estimate of Density for Osmala Density and                             |                    |             | 27                 | range from the                                                       | e "Select screen    | size to be tar                  | geted:" drop-o               | down. The idea   | al size range   | if there is plen | ty of material  | available is th                                     | e largest (ie.  | -31.5+26.5    |  |
| Estimate of Density for Sample Requirements:                           |                    |             | 2.1                | mm). Howeve                                                          | er, the test is mo: | st commonly (<br>ize range (-16 | carried out on<br>6+13 2 mm) | Although the r   | i material and  | this is quite a  | cceptable also  | <ol> <li>IT sample q<br/>icv will not be</li> </ol> | quite as good   | y limited you |  |
| Approximate Length of Starting Material Required:                      |                    |             | Not Applicable     | size range, so                                                       | it should only be   | e used as a la                  | ist resort whe               | n there is not e | nough sampl     | e to complete    | the test on a o | coarser size fi                                     | raction.        | 2 doing this  |  |

| Project No.:<br>Sample.: | 18559-01<br>SN Comp                                                                                                                                                           | Date:<br>Laboratory:                                                                          | 25-Aug-21<br>Lakefield (Canada) |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------|
| Purpose:                 | To determine the rod mill grindability of the Bond work index number.                                                                                                         | e sample in terr                                                                              | ns of a                         |
| Procedure:               | The equipment and procedure duplicate th determining rod mill work indices.                                                                                                   | e Bond metho                                                                                  | d for                           |
| Test Conditions:         | Feed 100% Passing0.Mesh of grind:1.Test feed weight (1250 mL):3,1Equivalent to :2,481kg/mWeight % of the undersize material in theWeight of undersize product for 100% circle | 5 inch<br>4 mesh<br>01 grams<br><sup>3</sup> at Minus 1/2'<br>rod mill feed:<br>ulating load: | 26.4%<br>1,550 grams            |
| Results:                 | Gram per Rev Average for the Last Three<br>Circulation load = <b>99%</b>                                                                                                      | Stages =                                                                                      | 18.34 g                         |

CALCULATION OF A BOND WORK INDEX

|                      | 62                                                                  |                        |         |
|----------------------|---------------------------------------------------------------------|------------------------|---------|
|                      | $P1^{0.23}$ x Grp $^{0.625}$ x $\left\{\frac{10}{\sqrt{P}}\right\}$ | $-\frac{10}{\sqrt{F}}$ |         |
| P1 = 10              | 0% passing size of the product                                      | 1,180                  | microns |
| Grp = G              | rams per revolution                                                 | 18.34                  | grams   |
| P <sub>80</sub> = 80 | % passing size of product                                           | 887                    | microns |
| F <sub>80</sub> = 80 | % passing size of the feed                                          | 9,679                  | microns |
| WI =                 | 8.4 kWh/ton (Imperial)                                              |                        |         |
| RWI =                | 9.3 kWh/tonne (metric)                                              |                        |         |

Comments:

| Stage | # of | New     | Product | Material to | Material Passing   | Net Ground | Material Ground |
|-------|------|---------|---------|-------------|--------------------|------------|-----------------|
| No.   | Revs | Feed    | in Feed | Be Ground   | 14 mesh in Product | Material   | Per Mill Rev    |
|       |      | (grams) | (grams) | (grams)     | (grams)            | (grams)    | (grams)         |
| 1     | 25   | 3,101   | 819     | 731         | 1,237              | 417        | 16.70           |
| 2     | 65   | 1,237   | 327     | 1,224       | 1,434              | 1,107      | 17.03           |
| 3     | 69   | 1,434   | 379     | 1,172       | 1,586              | 1,207      | 17.49           |
| 4     | 65   | 1,586   | 419     | 1,131       | 1,577              | 1,158      | 17.81           |
| 5     | 64   | 1,577   | 417     | 1,134       | 1,611              | 1,194      | 18.66           |
| 6     | 60   | 1,611   | 426     | 1,125       | 1,517              | 1,091      | 18.19           |
| 7     | 63   | 1,517   | 401     | 1,150       | 1,547              | 1,146      | 18.19           |

| Project No.: | 18559-01 | Date:       | 25-Aug-21          |
|--------------|----------|-------------|--------------------|
| Sample.:     | SN Comp  | Laboratory: | Lakefield (Canada) |

|       |        | Feed Par | ticle Size An | alysis            |            |        |              |                   |            |
|-------|--------|----------|---------------|-------------------|------------|--------|--------------|-------------------|------------|
| S     | ize    | Weight   | % Re          | tained            | % Passing  |        |              |                   |            |
| Mesh  | μm     | grams    | Individual    | Cumulative        | Cumulative |        |              |                   |            |
| 1/2"  | 12,700 | 0.0      | 0.0           | 0.0               | 100.0      |        |              |                   |            |
| 7/16" | 11,200 | 213.5    | 11.8          | 11.8              | 88.2       |        |              |                   |            |
| 3/8"  | 9,500  | 164.9    | 9.1           | 21.0              | 79.0       |        |              |                   |            |
| 3     | 6,700  | 317.4    | 17.6          | 38.6              | 61.4       |        |              |                   |            |
| 4     | 4,750  | 207.8    | 11.5          | 50.1              | 49.9       |        |              |                   |            |
| 6     | 3,350  | 137.9    | 7.6           | 57.8              | 42.2       | Pr     | oduct Partic | le Size Analy     | sis        |
| 8     | 2,360  | 113.6    | 6.3           | 64.1              | 35.9       | Weight | % Re         | tained            | % Passing  |
| 10    | 1,700  | 88.5     | 4.9           | 69.0              | 31.0       | grams  | Individual   | Cumulative        | Cumulative |
| 14    | 1,180  | 83.1     | 4.6           | 73.6              | 26.4       | 0.0    | 0.0          | 0.0               | 100.0      |
| 18    | 1,000  | -        | -             | -                 | -          | 36.6   | 10.4         | 10.4              | 89.6       |
| 20    | 850    | 85.0     | 4.7           | 78.3              | 21.7       | 45.1   | 12.8         | 23.2              | 76.8       |
| 28    | 600    | 71.5     | 4.0           | 82.3              | 17.7       | 58.9   | 16.7         | 39.9              | 60.1       |
| 35    | 425    |          |               |                   |            | 49.1   | 13.9         | 53.8              | 46.2       |
| 48    | 300    |          |               |                   |            | 40.2   | 11.4         | 65.3              | 34.7       |
| 65    | 212    |          |               |                   |            | 32.3   | 9.2          | 74.4              | 25.6       |
| 100   | 150    |          |               |                   |            | 23.8   | 6.8          | 81.2              | 18.8       |
| Pan   |        | 319.9    | 17.7          | 100.0             | -          | 66.3   | 18.8         | 100.0             |            |
| Total | -      | 1803.1   | 100.0         | F <sub>80</sub> : | 9,679      | 352.3  | 100.0        | P <sub>80</sub> : | 887        |



18559-01 - RWI - SN Comp.xls Results Page 2 of 2 SGS Minerals Services - Lakefield Site CONFIDENTIAL

| Project No.:<br>Sample.: | 18559-01<br>S Comp                                                                                                                                                               | Date:<br>Laboratory:                                                                          | 23-Aug-21<br>Lakefield (Canada) |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------|
| Purpose:                 | To determine the rod mill grindability of the Bond work index number.                                                                                                            | sample in terr                                                                                | ns of a                         |
| Procedure:               | The equipment and procedure duplicate th determining rod mill work indices.                                                                                                      | e Bond metho                                                                                  | d for                           |
| Test Conditions:         | Feed 100% Passing0.Mesh of grind:14Test feed weight (1250 mL):2,9Equivalent to :2,387Kg/miWeight % of the undersize material in the mWeight of undersize product for 100% circle | 5 inch<br>4 mesh<br>84 grams<br><sup>3</sup> at Minus 1/2'<br>rod mill feed:<br>ulating load: | 31.3%<br>1,492 grams            |
| Results:                 | Gram per Rev Average for the Last Three<br>Circulation load = <b>96%</b>                                                                                                         | Stages =                                                                                      | 19.99 g                         |

CALCULATION OF A BOND WORK INDEX

| BW(I =62                                                                     |                                       |         |
|------------------------------------------------------------------------------|---------------------------------------|---------|
| $P1^{0.23} \times Grp^{0.625} \times \left\{ \frac{10}{\sqrt{P}} - \right\}$ | $\left. \frac{10}{\sqrt{F}} \right\}$ |         |
| P1 = 100% passing size of the product                                        | 1,180                                 | microns |
| Grp = Grams per revolution                                                   | 19.99                                 | grams   |
| P <sub>80</sub> = 80% passing size of product                                | 884                                   | microns |
| $F_{80}$ = 80% passing size of the feed                                      | 9,147                                 | microns |
| RWI = <b>8.1</b> kWh/ton (Imperial)                                          |                                       |         |

8.9 kWh/tonne (metric)

RWI =

Comments:

| Stage | # of | New     | Product | Material to | Material Passing   | Net Ground | Material Ground |
|-------|------|---------|---------|-------------|--------------------|------------|-----------------|
| No.   | Revs | Feed    | in Feed | Be Ground   | 14 mesh in Product | Material   | Per Mill Rev    |
|       |      | (grams) | (grams) | (grams)     | (grams)            | (grams)    | (grams)         |
| 1     | 25   | 2,984   | 935     | 557         | 1,409              | 474        | 18.96           |
| 2     | 50   | 1,409   | 442     | 1,051       | 1,360              | 919        | 18.37           |
| 3     | 58   | 1,360   | 426     | 1,066       | 1,536              | 1,110      | 19.14           |
| 4     | 53   | 1,536   | 481     | 1,011       | 1,505              | 1,024      | 19.32           |
| 5     | 53   | 1,505   | 472     | 1,020       | 1,522              | 1,051      | 19.82           |
| 6     | 51   | 1,522   | 477     | 1,015       | 1,491              | 1,014      | 19.89           |
| 7     | 52   | 1,491   | 467     | 1,025       | 1,452              | 985        | 18.94           |
| 8     | 54   | 1,452   | 455     | 1,037       | 1,527              | 1,072      | 19.85           |
| 9     | 52   | 1,527   | 479     | 1,014       | 1,506              | 1,028      | 19.76           |
| 10    | 52   | 1,506   | 472     | 1,020       | 1,531              | 1,059      | 20.37           |

1,521 g

Average for Last Three Stages =

| Project No .: | 18559-01 | Date:       | 23-Aug-21          |
|---------------|----------|-------------|--------------------|
| Sample.:      | S Comp   | Laboratory: | Lakefield (Canada) |

| Feed Particle Size Analysis |        |        |            |                   |            |                                |            |                   |            |
|-----------------------------|--------|--------|------------|-------------------|------------|--------------------------------|------------|-------------------|------------|
| S                           | ize    | Weight | % Re       | tained            | % Passing  |                                |            |                   |            |
| Mesh                        | μm     | grams  | Individual | Cumulative        | Cumulative |                                |            |                   |            |
| 1/2"                        | 12,700 | 0.0    | 0.0        | 0.0               | 100.0      |                                |            |                   |            |
| 7/16"                       | 11,200 | 133.4  | 8.4        | 8.4               | 91.6       |                                |            |                   |            |
| 3/8"                        | 9,500  | 154.8  | 9.8        | 18.2              | 81.8       |                                |            |                   |            |
| 3                           | 6,700  | 240.0  | 15.2       | 33.4              | 66.6       |                                |            |                   |            |
| 4                           | 4,750  | 175.1  | 11.1       | 44.4              | 55.6       |                                |            |                   |            |
| 6                           | 3,350  | 134.7  | 8.5        | 52.9              | 47.1       | Product Particle Size Analysis |            |                   | sis        |
| 8                           | 2,360  | 100.4  | 6.3        | 59.3              | 40.7       | Weight                         | % Re       | tained            | % Passing  |
| 10                          | 1,700  | 76.1   | 4.8        | 64.1              | 35.9       | grams                          | Individual | Cumulative        | Cumulative |
| 14                          | 1,180  | 72.8   | 4.6        | 68.7              | 31.3       | 0.0                            | 0.0        | 0.0               | 100.0      |
| 18                          | 1,000  | -      | -          | -                 | -          | 39.1                           | 11.1       | 11.1              | 88.9       |
| 20                          | 850    | 77.1   | 4.9        | 73.5              | 26.5       | 40.8                           | 11.6       | 22.7              | 77.3       |
| 28                          | 600    | 70.9   | 4.5        | 78.0              | 22.0       | 53.6                           | 15.2       | 37.9              | 62.1       |
| 35                          | 425    |        |            |                   |            | 47.2                           | 13.4       | 51.3              | 48.7       |
| 48                          | 300    |        |            |                   |            | 41.0                           | 11.6       | 62.9              | 37.1       |
| 65                          | 212    |        |            |                   |            | 32.4                           | 9.2        | 72.1              | 27.9       |
| 100                         | 150    |        |            |                   |            | 25.2                           | 7.2        | 79.3              | 20.7       |
| Pan                         |        | 348.2  | 22.0       | 100.0             | -          | 73.0                           | 20.7       | 100.0             | -          |
| Total                       | -      | 1583.5 | 100.0      | F <sub>80</sub> : | 9,147      | 352.3                          | 100.0      | P <sub>80</sub> : | 884        |



| Project No.:<br>Sample.: | 18559-01<br>P Comp                                                                                                                                                               | Date:<br>Laboratory:                                                              | 23-Aug-21<br>Lakefield (Canada) |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------|
| Purpose:                 | To determine the rod mill grindability of the Bond work index number.                                                                                                            | sample in teri                                                                    | ms of a                         |
| Procedure:               | The equipment and procedure duplicate the determining rod mill work indices.                                                                                                     | e Bond metho                                                                      | d for                           |
| Test Conditions:         | Feed 100% Passing0.Mesh of grind:14Test feed weight (1250 mL):2,7Equivalent to :2,177kg/miWeight % of the undersize material in the mWeight of undersize product for 100% circle | 5 inch<br>4 mesh<br>22 grams<br>3 at Minus 1/2'<br>od mill feed:<br>ulating load: | '<br>24.8%<br>1,361 grams       |
| Results:                 | Gram per Rev Average for the Last Three<br>Circulation load = <b>99%</b>                                                                                                         | Stages =                                                                          | 12.53 g                         |

CALCULATION OF A BOND WORK INDEX

|                      | 62                                      |                        |         |
|----------------------|-----------------------------------------|------------------------|---------|
|                      | = 1000000000000000000000000000000000000 | $-\frac{10}{\sqrt{F}}$ |         |
| P1 = 10              | 00% passing size of the product         | 1,180                  | microns |
| Grp = G              | Grams per revolution                    | 12.53                  | grams   |
| P <sub>80</sub> = 80 | 0% passing size of product              | 849                    | microns |
| F <sub>80</sub> = 80 | 0% passing size of the feed             | 9,744                  | microns |
| RWI =                | <b>10.4</b> kWh/ton (Imperial)          |                        |         |
| RWI =                | <b>11.4</b> kWh/tonne (metric)          |                        |         |

Comments:

| Stage | # of | New     | Product | Material to | Material Passing   | Net Ground | Material Ground |
|-------|------|---------|---------|-------------|--------------------|------------|-----------------|
| No.   | Revs | Feed    | in Feed | Be Ground   | 14 mesh in Product | Material   | Per Mill Rev    |
|       |      | (grams) | (grams) | (grams)     | (grams)            | (grams)    | (grams)         |
| 1     | 25   | 2,722   | 676     | 685         | 911                | 235        | 9.40            |
| 2     | 100  | 911     | 226     | 1,135       | 1,322              | 1,096      | 10.96           |
| 3     | 94   | 1,322   | 328     | 1,033       | 1,432              | 1,104      | 11.74           |
| 4     | 86   | 1,432   | 355     | 1,005       | 1,389              | 1,033      | 12.01           |
| 5     | 85   | 1,389   | 345     | 1,016       | 1,421              | 1,076      | 12.66           |
| 6     | 80   | 1,421   | 353     | 1,008       | 1,350              | 997        | 12.46           |
| 7     | 82   | 1,350   | 335     | 1,026       | 1,351              | 1,016      | 12.39           |
| 8     | 83   | 1,351   | 335     | 1,026       | 1,393              | 1,057      | 12.74           |

| Project No.: | 18559-01 | Date:       | 23-Aug-21          |
|--------------|----------|-------------|--------------------|
| Sample.:     | P Comp   | Laboratory: | Lakefield (Canada) |

| Feed Particle Size Analysis |        |        |            |                   |            |                                |            |                   |            |
|-----------------------------|--------|--------|------------|-------------------|------------|--------------------------------|------------|-------------------|------------|
| S                           | ize    | Weight | % Re       | tained            | % Passing  |                                |            |                   |            |
| Mesh                        | μm     | grams  | Individual | Cumulative        | Cumulative |                                |            |                   |            |
| 1/2"                        | 12,700 | 0.0    | 0.0        | 0.0               | 100.0      |                                |            |                   |            |
| 7/16"                       | 11,200 | 114.5  | 8.6        | 8.6               | 91.4       |                                |            |                   |            |
| 3/8"                        | 9,500  | 177.2  | 13.3       | 21.9              | 78.1       |                                |            |                   |            |
| 3                           | 6,700  | 247.9  | 18.6       | 40.6              | 59.4       |                                |            |                   |            |
| 4                           | 4,750  | 172.4  | 13.0       | 53.5              | 46.5       |                                |            |                   |            |
| 6                           | 3,350  | 106.1  | 8.0        | 61.5              | 38.5       | Product Particle Size Analysis |            |                   | sis        |
| 8                           | 2,360  | 79.8   | 6.0        | 67.5              | 32.5       | Weight                         | % Re       | tained            | % Passing  |
| 10                          | 1,700  | 57.4   | 4.3        | 71.8              | 28.2       | grams                          | Individual | Cumulative        | Cumulative |
| 14                          | 1,180  | 45.0   | 3.4        | 75.2              | 24.8       | 0.0                            | 0.0        | 0.0               | 100.0      |
| 18                          | 1,000  | -      | -          | -                 | -          | 33.8                           | 9.5        | 9.5               | 90.5       |
| 20                          | 850    | 40.2   | 3.0        | 78.2              | 21.8       | 37.0                           | 10.4       | 19.9              | 80.1       |
| 28                          | 600    | 32.5   | 2.4        | 80.6              | 19.4       | 46.3                           | 13.0       | 33.0              | 67.0       |
| 35                          | 425    |        |            |                   |            | 38.9                           | 11.0       | 43.9              | 56.1       |
| 48                          | 300    |        |            |                   |            | 34.6                           | 9.7        | 53.7              | 46.3       |
| 65                          | 212    |        |            |                   |            | 32.1                           | 9.0        | 62.7              | 37.3       |
| 100                         | 150    |        |            |                   |            | 28.7                           | 8.1        | 70.8              | 29.2       |
| Pan                         |        | 257.7  | 19.4       | 100.0             | -          | 103.8                          | 29.2       | 100.0             | -          |
| Total                       | -      | 1330.7 | 100.0      | F <sub>80</sub> : | 9,744      | 355.2                          | 100.0      | P <sub>80</sub> : | 849        |



| Project No.:<br>Sample: | 18559-01<br>SN Comp                                                                                                                                                        | Date:<br>Laboratory:                                                                                 | 21-Jul-21<br>Lakefield (Canada) |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|
| Purpose:                | The equipment and procedure duplicate the determining ball mill work indices.                                                                                              | ne Bond method f                                                                                     | ör                              |
| Procedure:              | The equipment and procedure duplicate the determining ball mill work indices.                                                                                              | ne Bond method f                                                                                     | or                              |
| Test Conditions:        | Feed 100% PassingMesh of grind:1Test feed weight (700 mL):1,7Equivalent to :2,464 kg/mWeight % of the undersize material in theWeight of undersize product for 250% circle | 6 mesh<br>00 mesh<br>725 grams<br>1 <sup>3</sup> at Minus 6 mes<br>ball mill feed:<br>culating load: | sh<br>13.7%<br>493 grams        |
| Results:                | Gram per Rev Average for the Last Three<br>Circulation load = <b>252%</b>                                                                                                  | Stages =                                                                                             | 1.98 g                          |
|                         | CALCULATION OF A BO                                                                                                                                                        | ND WORK INDE                                                                                         | х                               |

| B\//I  | 44.5                                                                    |                        |
|--------|-------------------------------------------------------------------------|------------------------|
| DVVI = | $P1^{0.23} \times Grp^{0.82} \times \left\{\frac{10}{\sqrt{P}}\right\}$ | $-\frac{10}{\sqrt{F}}$ |

| P1 = 100% passing size of the product         | 150   | microns |
|-----------------------------------------------|-------|---------|
| Grp = Grams per revolution                    | 1.98  | grams   |
| P <sub>80</sub> = 80% passing size of product | 123   | microns |
| $F_{80}$ = 80% passing size of the feed       | 2,129 | microns |

 BWI =
 **11.7** kWh/ton (Imperial)

 BWI =
 **12.9** kWh/tonne (metric)

Average for Last Three Stages =

Comments:

| Stage | # of | New     | Product | Material to | Material Passing    | Net Ground | Material Ground |
|-------|------|---------|---------|-------------|---------------------|------------|-----------------|
| No.   | Revs | Feed    | in Feed | Be Ground   | 100 mesh in Product | Material   | Per Mill Rev    |
|       |      | (grams) | (grams) | (grams)     | (grams)             | (grams)    | (grams)         |
| 1     | 100  | 1,725   | 237     | 256         | 415                 | 178        | 1.78            |
| 2     | 245  | 415     | 57      | 436         | 500                 | 443        | 1.81            |
| 3     | 235  | 500     | 69      | 424         | 539                 | 470        | 2.00            |
| 4     | 209  | 539     | 74      | 419         | 499                 | 425        | 2.03            |
| 5     | 209  | 499     | 68      | 424         | 484                 | 415        | 1.99            |
| 6     | 215  | 484     | 66      | 426         | 490                 | 423        | 1.97            |
| 7     | 216  | 490     | 67      | 426         | 498                 | 430        | 1.99            |

490 g

updated 12/13/2021

| Project                                                         | No.:                                              | 18559-01                                  |                                       |                                             |                                             |                                                              | Date:                                                                   | 21-J                                                               | ul-21                                                                |
|-----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|
| Sample:                                                         |                                                   | SN Comp                                   |                                       |                                             |                                             |                                                              | Laboratory:                                                             | Lakefield                                                          | (Canada)                                                             |
|                                                                 |                                                   | E. J. D.                                  |                                       |                                             |                                             |                                                              |                                                                         |                                                                    |                                                                      |
|                                                                 |                                                   | Feed Par                                  | ticle Size An                         | alysis                                      |                                             |                                                              |                                                                         |                                                                    |                                                                      |
| Si                                                              | ze                                                | Weight                                    | % Re                                  | tained                                      | % Passing                                   |                                                              |                                                                         |                                                                    |                                                                      |
| Mesh                                                            | μm                                                | grams                                     | Individual                            | Cumulative                                  | Cumulative                                  |                                                              |                                                                         |                                                                    |                                                                      |
| 6                                                               | 3,360                                             | 0.0                                       | 0.0                                   | 0.0                                         | 100.0                                       |                                                              |                                                                         |                                                                    |                                                                      |
| 7                                                               | 2,800                                             | 53.2                                      | 6.8                                   | 6.8                                         | 93.2                                        |                                                              |                                                                         |                                                                    |                                                                      |
| 8                                                               | 2,360                                             | 65.1                                      | 8.3                                   | 15.0                                        | 85.0                                        |                                                              |                                                                         |                                                                    |                                                                      |
| 10                                                              | 1,700                                             | 116.3                                     | 14.8                                  | 29.8                                        | 70.2                                        |                                                              |                                                                         |                                                                    |                                                                      |
| 14                                                              | 1,180                                             | 103.6                                     | 13.2                                  | 43.0                                        | 57.0                                        |                                                              |                                                                         |                                                                    |                                                                      |
| 20                                                              | 850                                               | 70.9                                      | 9.0                                   | 52.0                                        | 48.0                                        |                                                              |                                                                         |                                                                    |                                                                      |
| 28                                                              | 600                                               | 69.4                                      | 8.8                                   | 60.9                                        | 39.1                                        | Pr                                                           | oduct Partic                                                            | le Size Analy                                                      | sis                                                                  |
| 25                                                              | 425                                               | 62.2                                      | 7.9                                   | 68.8                                        | 31.2                                        | Weight                                                       | % Re                                                                    | tained                                                             | % Passing                                                            |
| 35                                                              | .=•                                               |                                           |                                       |                                             |                                             |                                                              |                                                                         |                                                                    |                                                                      |
| 35<br>48                                                        | 300                                               | 55.2                                      | 7.0                                   | 75.8                                        | 24.2                                        | grams                                                        | Individual                                                              | Cumulative                                                         | Cumulative                                                           |
| 35<br>48<br>65                                                  | 300<br>212                                        | 55.2<br>43.4                              | 7.0<br>5.5                            | 75.8<br>81.3                                | 24.2<br>18.7                                | grams<br>0.0                                                 | Individual<br>0.0                                                       | Cumulative<br>0.0                                                  | Cumulative<br>100.0                                                  |
| 48<br>65<br>100                                                 | 300<br>212<br>150                                 | 55.2<br>43.4<br>38.9                      | 7.0<br>5.5<br>4.9                     | 75.8<br>81.3<br>86.3                        | 24.2<br>18.7<br>13.7                        | grams<br>0.0<br>0.0                                          | Individual<br>0.0<br>0.0                                                | Cumulative<br>0.0<br>0.0                                           | Cumulative<br>100.0<br>100.0                                         |
| 48<br>65<br>100<br>115                                          | 300<br>212<br>150<br>125                          | 55.2<br>43.4<br>38.9<br>-                 | 7.0<br>5.5<br>4.9<br>-                | 75.8<br>81.3<br>86.3<br><i>88.4</i>         | 24.2<br>18.7<br>13.7<br><i>11.6</i>         | grams<br>0.0<br>0.0<br>28.1                                  | Individual<br>0.0<br>0.0<br>18.1                                        | Cumulative<br>0.0<br>0.0<br>18.1                                   | Cumulative<br>100.0<br>100.0<br>81.9                                 |
| 48<br>65<br>100<br>115<br>150                                   | 300<br>212<br>150<br>125<br>106                   | 55.2<br>43.4<br>38.9<br>-<br>29.4         | 7.0<br>5.5<br>4.9<br>-<br>3.7         | 75.8<br>81.3<br>86.3<br><i>88.4</i><br>90.0 | 24.2<br>18.7<br>13.7<br>11.6<br>10.0        | grams<br>0.0<br>0.0<br>28.1<br>23.2                          | Individual<br>0.0<br>0.0<br>18.1<br>15.0                                | Cumulative<br>0.0<br>0.0<br>18.1<br>33.1                           | Cumulative<br>100.0<br>100.0<br>81.9<br>66.9                         |
| 33<br>48<br>65<br>100<br>115<br>150<br>200                      | 300<br>212<br>150<br>125<br>106<br>75             | 55.2<br>43.4<br>38.9<br>-<br>29.4         | 7.0<br>5.5<br>4.9<br>-<br>3.7         | 75.8<br>81.3<br>86.3<br><i>88.4</i><br>90.0 | 24.2<br>18.7<br>13.7<br>11.6<br>10.0        | grams<br>0.0<br>0.0<br>28.1<br>23.2<br>32.2                  | Individual<br>0.0<br>0.0<br>18.1<br>15.0<br>20.8                        | Cumulative<br>0.0<br>0.0<br>18.1<br>33.1<br>53.9                   | Cumulative<br>100.0<br>100.0<br>81.9<br>66.9<br>46.1                 |
| 33<br>48<br>65<br>100<br>115<br>150<br>200<br>270               | 300<br>212<br>150<br>125<br>106<br>75<br>53       | 55.2<br>43.4<br>38.9<br>-<br>29.4         | 7.0<br>5.5<br>4.9<br>-<br>3.7         | 75.8<br>81.3<br>86.3<br><i>88.4</i><br>90.0 | 24.2<br>18.7<br>13.7<br><i>11.6</i><br>10.0 | grams<br>0.0<br>0.0<br>28.1<br>23.2<br>32.2<br>20.5          | Individual<br>0.0<br>0.0<br>18.1<br>15.0<br>20.8<br>13.2                | Cumulative<br>0.0<br>18.1<br>33.1<br>53.9<br>67.1                  | Cumulative<br>100.0<br>100.0<br>81.9<br>66.9<br>46.1<br>32.9         |
| 33<br>48<br>65<br>100<br>115<br>150<br>200<br>270<br>400        | 300<br>212<br>150<br>125<br>106<br>75<br>53<br>38 | 55.2<br>43.4<br>38.9<br>-<br>29.4         | 7.0<br>5.5<br>4.9<br>-<br>3.7         | 75.8<br>81.3<br>86.3<br>88.4<br>90.0        | 24.2<br>18.7<br>13.7<br>11.6<br>10.0        | grams<br>0.0<br>0.0<br>28.1<br>23.2<br>32.2<br>20.5<br>14.1  | Individual<br>0.0<br>0.0<br>18.1<br>15.0<br>20.8<br>13.2<br>9.1         | Cumulative<br>0.0<br>18.1<br>33.1<br>53.9<br>67.1<br>76.2          | Cumulative<br>100.0<br>100.0<br>81.9<br>66.9<br>46.1<br>32.9<br>23.8 |
| 33<br>48<br>65<br>100<br>115<br>150<br>200<br>270<br>400<br>Pan | 300<br>212<br>150<br>125<br>106<br>75<br>53<br>38 | 55.2<br>43.4<br>38.9<br>-<br>29.4<br>78.5 | 7.0<br>5.5<br>4.9<br>-<br>3.7<br>10.0 | 75.8<br>81.3<br>86.3<br>88.4<br>90.0        | 24.2<br>18.7<br>13.7<br>11.6<br>10.0        | grams<br>0.0<br>28.1<br>23.2<br>32.2<br>20.5<br>14.1<br>36.9 | Individual<br>0.0<br>0.0<br>18.1<br>15.0<br>20.8<br>13.2<br>9.1<br>23.8 | Cumulative<br>0.0<br>18.1<br>33.1<br>53.9<br>67.1<br>76.2<br>100.0 | Cumulative<br>100.0<br>100.0<br>81.9<br>66.9<br>46.1<br>32.9<br>23.8 |

Values in italics were interpolated



| Project No.:<br>Sample: | 18559-01<br>S Comp                                                                                                                                                      | Date:<br>Laboratory:                                                                                     | 14-Jul-21<br>Lakefield (Canada) |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|
| Purpose:                | The equipment and procedure dupli determining ball mill work indices.                                                                                                   | cate the Bond method                                                                                     | l for                           |
| Procedure:              | The equipment and procedure dupli determining ball mill work indices.                                                                                                   | cate the Bond method                                                                                     | l for                           |
| Test Conditions:        | Feed 100% Passing<br>Mesh of grind:<br>Test feed weight (700 mL):<br>Equivalent to : 2,334<br>Weight % of the undersize material<br>Weight of undersize product for 250 | 6 mesh<br>100 mesh<br>1,634 grams<br>kg/m³ at Minus 6 m<br>in the ball mill feed:<br>% circulating load: | esh<br>14.9%<br>467 grams       |
| Results:                | Gram per Rev Average for the Last<br>Circulation load = <b>240%</b>                                                                                                     | Three Stages =                                                                                           | 1.89 g                          |
|                         | CALCULATION OF                                                                                                                                                          | A BOND WORK IND                                                                                          | EX                              |

| B\//I  | 44.5                                                                                         |                        |
|--------|----------------------------------------------------------------------------------------------|------------------------|
| DVVI = | $\overline{\text{P1}^{0.23}\times\text{Grp}^{0.82}\times\left\{\frac{10}{\sqrt{P}}-\right.}$ | $-\frac{10}{\sqrt{F}}$ |

| P1 = 100% passing size of the product         | 150   | microns |
|-----------------------------------------------|-------|---------|
| Grp = Grams per revolution                    | 1.89  | grams   |
| P <sub>80</sub> = 80% passing size of product | 126   | microns |
| $F_{80}$ = 80% passing size of the feed       | 2,035 | microns |

BWI = **12.4** kWh/ton (Imperial)

13.7 kWh/tonne (metric)

BWI =

Comments:

Stage 3: 3x10 min shakes Stage 6: Replaced 1 test sieve. Hole found

| Stage | # of | New     | Product    | Material to    | Material Passing    | Net Ground | Material Ground |
|-------|------|---------|------------|----------------|---------------------|------------|-----------------|
| No.   | Revs | Feed    | in Feed    | Be Ground      | 100 mesh in Product | Material   | Per Mill Rev    |
|       |      | (grams) | (grams)    | (grams)        | (grams)             | (grams)    | (grams)         |
| 1     | 100  | 1,634   | 243        | 224            | 448                 | 205        | 2.05            |
| 2     | 195  | 448     | 67         | 400            | 420                 | 353        | 1.81            |
| 3     | 223  | 420     | 62         | 404            | 499                 | 437        | 1.96            |
| 4     | 201  | 499     | 74         | 393            | 497                 | 423        | 2.10            |
| 5     | 187  | 497     | 74         | 393            | 478                 | 404        | 2.16            |
| 6     | 183  | 478     | 71         | 396            | 432                 | 361        | 1.97            |
| 7     | 204  | 432     | 64         | 403            | 454                 | 390        | 1.91            |
| 8     | 209  | 454     | 67         | 399            | 452                 | 385        | 1.84            |
| 9     | 217  | 452     | 67         | 400            | 459                 | 392        | 1.81            |
| 10    | 221  | 459     | 68         | 399            | 501                 | 433        | 1.96            |
| 11    | 210  | 501     | 74         | 392            | 456                 | 382        | 1.82            |
| 12    | 220  | 456     | 68         | 399            | 484                 | 416        | 1.89            |
|       |      | Averac  | e for Last | Three Stages = | 480 g               |            | 1.89 g          |

| Project                  | No.:                | 18559-01 |               |            |            |                                      | Date:                               | 14-J                          | ul-21                |
|--------------------------|---------------------|----------|---------------|------------|------------|--------------------------------------|-------------------------------------|-------------------------------|----------------------|
| Sample:                  |                     | S Comp   |               |            |            |                                      | Laboratory:                         | Lakefield                     | (Canada)             |
|                          |                     | <b>F</b> | ('            | - • • -    |            |                                      |                                     |                               |                      |
|                          |                     | Feed Par | TICIE SIZE AN | aiysis     |            |                                      |                                     |                               |                      |
| Si                       | ize                 | Weight   | % Re          | tained     | % Passing  |                                      |                                     |                               |                      |
| Mesh                     | μm                  | grams    | Individual    | Cumulative | Cumulative |                                      |                                     |                               |                      |
| 6                        | 3,360               | 0.0      | 0.0           | 0.0        | 100.0      |                                      |                                     |                               |                      |
| 7                        | 2,800               | 51.6     | 6.2           | 6.2        | 93.8       |                                      |                                     |                               |                      |
| 8                        | 2,360               | 65.8     | 7.9           | 14.1       | 85.9       |                                      |                                     |                               |                      |
| 10                       | 1,700               | 104.3    | 12.5          | 26.6       | 73.4       |                                      |                                     |                               |                      |
| 14                       | 1,180               | 100.2    | 12.0          | 38.7       | 61.3       |                                      |                                     |                               |                      |
| 20                       | 850                 | 73.0     | 8.8           | 47.4       | 52.6       |                                      |                                     |                               |                      |
| 28                       | 600                 | 75.8     | 9.1           | 56.5       | 43.5       | Pr                                   | oduct Partic                        | le Size Analy                 | sis                  |
| 35                       | 425                 | 73.2     | 8.8           | 65.3       | 34.7       | Weight                               | % Re                                | tained                        | % Passing            |
| 48                       | 300                 | 66.8     | 8.0           | 73.3       | 26.7       | grams                                | Individual                          | Cumulative                    | Cumulative           |
| 65                       | 212                 | 51.4     | 6.2           | 79.5       | 20.5       | 0.0                                  | 0.0                                 | 0.0                           | 100.0                |
| 100                      | 150                 | 46.9     | 5.6           | 85.1       | 14.9       | 0.0                                  | 0.0                                 | 0.0                           | 100.0                |
| 115                      | 125                 | -        | -             | 87.5       | 12.5       | 31.8                                 | 20.5                                | 20.5                          | 79.5                 |
| 150                      | 100                 | 24.4     | 1 1           | 00.0       | 10.0       | 00.0                                 | 117                                 | 25 1                          | 64 9                 |
|                          | 106                 | 34.1     | 4.1           | 89.Z       | 10.0       | 22.8                                 | 14.7                                | 35.1                          | 04.0                 |
| 200                      | 75                  | 34.1     | 4.1           | 89.Z       | 10.0       | 22.8<br>30.7                         | 14.7                                | 54.9                          | 45.1                 |
| 200<br>270               | 75<br>53            | 34.1     | 4.1           | 69.2       | 10.6       | 22.8<br>30.7<br>20.3                 | 14.7<br>19.8<br>13.1                | 54.9<br>68.0                  | 45.1<br>32.0         |
| 200<br>270<br>400        | 75<br>53<br>38      | 34.1     | 4.1           | 89.2       | 10.0       | 22.8<br>30.7<br>20.3<br>13.4         | 14.7<br>19.8<br>13.1<br>8.6         | 54.9<br>68.0<br>76.6          | 45.1<br>32.0<br>23.4 |
| 200<br>270<br>400<br>Pan | 75<br>53<br>38<br>- | 89.6     | 10.8          | 100.0      | -          | 22.8<br>30.7<br>20.3<br>13.4<br>36.4 | 14.7<br>19.8<br>13.1<br>8.6<br>23.4 | 54.9<br>68.0<br>76.6<br>100.0 | 45.1<br>32.0<br>23.4 |

Values in italics were interpolated



| Project No.:<br>Sample: | 18559-01<br>P Comp                                                                                                                                                          | Date:<br>Laboratory:                                                                                   | 12-Jul-21<br>Lakefield (Canada) |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|
| Purpose:                | The equipment and procedure duplic determining ball mill work indices.                                                                                                      | ate the Bond method                                                                                    | for                             |
| Procedure:              | The equipment and procedure duplic determining ball mill work indices.                                                                                                      | ate the Bond method                                                                                    | for                             |
| Test Conditions:        | Feed 100% Passing<br>Mesh of grind:<br>Test feed weight (700 mL):<br>Equivalent to : 2,205<br>Weight % of the undersize material in<br>Weight of undersize product for 250% | 6 mesh<br>100 mesh<br>1,544 grams<br>kg/m³ at Minus 6 me<br>the ball mill feed:<br>6 circulating load: | esh<br>20.8%<br>441 grams       |
| Results:                | Gram per Rev Average for the Last T<br>Circulation load = <b>250%</b>                                                                                                       | hree Stages =                                                                                          | 1.91 g                          |
|                         | CALCULATION OF                                                                                                                                                              | A BOND WORK IND                                                                                        | EX                              |

| B\//I _ | 44.5                                                                    |                        |
|---------|-------------------------------------------------------------------------|------------------------|
| BVVI =  | $P1^{0.23} \times Grp^{0.82} \times \left\{\frac{10}{\sqrt{P}}\right\}$ | $-\frac{10}{\sqrt{F}}$ |

| P1 = 100% passing size of the product         | 150   | microns |
|-----------------------------------------------|-------|---------|
| Grp = Grams per revolution                    | 1.91  | grams   |
| P <sub>80</sub> = 80% passing size of product | 129   | microns |
| $F_{80}$ = 80% passing size of the feed       | 2,207 | microns |

 BWI =
 12.4 kWh/ton (Imperial)

 BWI =
 13.7 kWh/tonne (metric)

Average for Last Three Stages =

Comments:

Stage 3: 3x10 minute shakes

| Stage | # of | New     | Product | Material to | Material Passing    | Net Ground | Material Ground |
|-------|------|---------|---------|-------------|---------------------|------------|-----------------|
| No.   | Revs | Feed    | in Feed | Be Ground   | 100 mesh in Product | Material   | Per Mill Rev    |
|       |      | (grams) | (grams) | (grams)     | (grams)             | (grams)    | (grams)         |
| 1     | 100  | 1,544   | 321     | 120         | 526                 | 204        | 2.04            |
| 2     | 162  | 526     | 109     | 332         | 420                 | 310        | 1.91            |
| 3     | 185  | 420     | 87      | 354         | 440                 | 352        | 1.90            |
| 4     | 184  | 440     | 91      | 350         | 444                 | 352        | 1.91            |
| 5     | 182  | 444     | 92      | 349         | 436                 | 343        | 1.89            |
| 6     | 186  | 436     | 91      | 350         | 448                 | 357        | 1.92            |
| 7     | 181  | 448     | 93      | 348         | 440                 | 346        | 1.91            |

441 g

updated 12/13/2021

| Project | No.:  | 18559-01 |               |                   |            |        | Date:        | 12-J              | ul-21      |
|---------|-------|----------|---------------|-------------------|------------|--------|--------------|-------------------|------------|
| Sample: |       | P Comp   |               |                   |            |        | Laboratory:  | Lakefield         | (Canada)   |
|         |       |          |               |                   |            |        |              |                   |            |
|         |       | Feed Par | ticle Size An | alysis            |            |        |              |                   |            |
| Si      | ze    | Weight   | % Re          | tained            | % Passing  |        |              |                   |            |
| Mesh    | μm    | grams    | Individual    | Cumulative        | Cumulative |        |              |                   |            |
| 6       | 3,360 | 0.0      | 0.0           | 0.0               | 100.0      |        |              |                   |            |
| 7       | 2,800 | 56.7     | 8.1           | 8.1               | 91.9       |        |              |                   |            |
| 8       | 2,360 | 62.7     | 8.9           | 17.0              | 83.0       |        |              |                   |            |
| 10      | 1,700 | 96.8     | 13.8          | 30.7              | 69.3       |        |              |                   |            |
| 14      | 1,180 | 79.9     | 11.4          | 42.1              | 57.9       |        |              |                   |            |
| 20      | 850   | 48.0     | 6.8           | 48.9              | 51.1       |        |              |                   |            |
| 28      | 600   | 42.9     | 6.1           | 55.0              | 45.0       | Pr     | oduct Partic | le Size Analy     | sis        |
| 35      | 425   | 41.7     | 5.9           | 61.0              | 39.0       | Weight | % Re         | tained            | % Passing  |
| 48      | 300   | 42.7     | 6.1           | 67.0              | 33.0       | grams  | Individual   | Cumulative        | Cumulative |
| 65      | 212   | 41.3     | 5.9           | 72.9              | 27.1       | 0.0    | 0.0          | 0.0               | 100.0      |
| 100     | 150   | 44.2     | 6.3           | 79.2              | 20.8       | 0.0    | 0.0          | 0.0               | 100.0      |
| 115     | 125   | -        | -             | 82.2              | 17.8       | 36.8   | 23.4         | 23.4              | 76.6       |
| 150     | 106   | 36.6     | 5.2           | 84.4              | 15.6       | 20.8   | 13.2         | 36.7              | 63.3       |
| 200     | 75    |          |               |                   |            | 29.1   | 18.5         | 55.2              | 44.8       |
| 270     | 53    |          |               |                   |            | 19.4   | 12.4         | 67.6              | 32.4       |
| 400     | 38    |          |               |                   |            | 14.6   | 9.3          | 76.9              | 23.1       |
| Pan     | -     | 109.7    | 15.6          | 100.0             | -          | 36.3   | 23.1         | 100.0             | -          |
| Total   | -     | 703.2    | 100.0         | F <sub>80</sub> : | 2.207      | 157.0  | 100.0        | P <sub>80</sub> : | 129        |

Values in italics were interpolated



updated 12/13/2021

| Project No.: | 18559-01                          |           |              | Date       | (mm/dd/yy): | 8-J           | ul-21         |
|--------------|-----------------------------------|-----------|--------------|------------|-------------|---------------|---------------|
| Sample:      | SN Comp                           |           |              | SGS        | Laboratory: | Lakefield     | (Canada)      |
|              |                                   |           |              |            | Technician: | OHTA          | . ,           |
| Purpose:     | To determine the Abrasion Inde    | ex of the | e sample     |            |             |               |               |
| Procedure:   | The equipment and procedure       | duplicat  | te the Bond  | method for |             |               |               |
|              | determining an abrasion index.    |           |              |            |             |               |               |
| Feed:        | 1,600 grams minus 3/4 inch plu    | ıs 1/2 ir | ich fraction |            |             |               |               |
| Number of c  | ycles of 15 minutes: 4 C          | ycles     |              |            |             |               |               |
|              | Reading:                          |           | #1           | #2         | Average     | _             |               |
| Results:     | Original paddle weight, grams:    |           | 94.6084      | 94.6083    | 94.6084     |               |               |
|              | Final paddle weight, grams:       |           | 94.4294      | 94.4292    | 94.4293     |               |               |
|              | Abrasion Index, Ai:               |           |              |            | 0.179       |               |               |
|              | ,                                 |           |              |            |             |               |               |
|              |                                   |           |              |            |             |               |               |
| Predicted W  | ear Rates:                        |           |              |            |             |               |               |
|              |                                   |           |              |            |             | <u>lb/kwh</u> | <u>kg/kwh</u> |
|              | Wet rod mill, rods:               | 0.35*(    | Ai-0.020)^0  | .20        |             | 0.24          | 0.11          |
|              | Wet rod mill, liners:             | 0.035     | *(Ai-0.015)^ | 0.30       |             | 0.020         | 0.009         |
|              | Ball Mill (overflow and grate dis | charge    | types)       |            |             |               |               |
|              | Wet hall mill halls:              | 0 35*(    | Δi_0 015)^0  | 33         |             | 0 10          | 0.087         |
|              | Wet ball mill, liners:            | 0.026     | *(Ai-0.015)^ | 0.30       |             | 0.015         | 0.0069        |
|              |                                   |           |              |            |             |               |               |
|              | Ball Mill (grate discharge type)  |           |              |            |             |               |               |
|              | Dry ball mill, balls:             | 0.05*(    | Ai)^0.5      |            |             | 0.021         | 0.010         |
|              | Dry ball mill, liners:            | 0.005     | *(Ai)^0.5    |            |             | 0.0021        | 0.0010        |
|              | Crushers (gyratory, jaw, cone)    |           |              |            |             |               |               |
|              | Crusher, liners:                  | (Ai+0.    | 22)/11       |            |             | 0.036         | 0.016         |
|              | Roll crusher, shells:             | (Ai/10    | )^0.67       |            |             | 0.068         | 0.031         |

| Project No .: | 18559-01 | Date:           | 8-Jul-21           |
|---------------|----------|-----------------|--------------------|
| Sample:       | SN Comp  | SGS Laboratory: | Lakefield (Canada) |

|        | Product Particle Size Analysis |        |            |            |            |  |  |  |
|--------|--------------------------------|--------|------------|------------|------------|--|--|--|
| Si     | ze                             | Weight | % Re       | etained    | % Passing  |  |  |  |
| Mesh   | μm                             | grams  | Individual | Cumulative | Cumulative |  |  |  |
| 1/2 in | 12,700                         | 51.6   | 6.36       | 6.36       | 93.6       |  |  |  |
| 3/8 in | 9,500                          | 65.4   | 8.06       | 14.4       | 85.6       |  |  |  |
| 3      | 6,700                          | 22.8   | 2.81       | 17.2       | 82.8       |  |  |  |
| 4      | 4,750                          | 16.4   | 2.02       | 19.3       | 80.7       |  |  |  |
| 6      | 3,350                          | 15.2   | 1.87       | 21.1       | 78.9       |  |  |  |
| 8      | 2,360                          | 28.6   | 3.53       | 24.7       | 75.3       |  |  |  |
| 10     | 1,700                          | 30.2   | 3.72       | 28.4       | 71.6       |  |  |  |
| 14     | 1,180                          | 33.2   | 4.09       | 32.5       | 67.5       |  |  |  |
| 20     | 850                            | 40.6   | 5.00       | 37.5       | 62.5       |  |  |  |
| 28     | 600                            | 49.4   | 6.09       | 43.6       | 56.4       |  |  |  |
| 35     | 425                            | 63.5   | 7.83       | 51.4       | 48.6       |  |  |  |
| 48     | 300                            | 72.1   | 8.89       | 60.3       | 39.7       |  |  |  |
| 65     | 212                            | 70.5   | 8.69       | 69.0       | 31.0       |  |  |  |
| 100    | 150                            | 45.1   | 5.56       | 74.5       | 25.5       |  |  |  |
| -100   | -150                           | 206.6  | 25.5       | 100.0      | -          |  |  |  |
|        | Total                          | 811.2  | 100.0      | K80        | 4.139      |  |  |  |



| Project No.: | 18559-01                           |           |                     | Date       | (mm/dd/yy): | 8-Ji          | ul-21          |
|--------------|------------------------------------|-----------|---------------------|------------|-------------|---------------|----------------|
| Sample:      | S Comp                             |           |                     | SGS        | Lakefield ( | Canada)       |                |
| •            | •                                  |           |                     |            | Technician: | OHTA          | ,              |
| Purpose:     | To determine the Abrasion Inde     | ex of the | e sample            |            |             | -             |                |
| Procedure:   | The equipment and procedure        | duplicat  | te the Bond         | method for |             |               |                |
|              | determining an abrasion index.     |           |                     |            |             |               |                |
| Feed:        | 1,600 grams minus 3/4 inch plu     | ıs 1/2 ir | nch fraction        |            |             |               |                |
| Number of cy | ycles of 15 minutes: 4 C           | ycles     |                     |            |             |               |                |
|              | Reading:                           |           | #1                  | #2         | Average     |               |                |
| Results:     | Original paddle weight, grams:     |           | 94.4294             | 94.4287    | 94.4291     |               |                |
|              | Final paddle weight, grams:        |           | 94.2614             | 94.2614    | 94.2614     |               |                |
|              |                                    |           |                     |            |             |               |                |
|              | Abrasion Index, Ai:                |           |                     |            | 0.168       |               |                |
|              |                                    |           |                     |            |             |               |                |
|              |                                    |           |                     |            |             |               |                |
|              |                                    |           |                     |            |             |               |                |
| Predicted We | ear Rates:                         |           |                     |            |             | lle /laude    | le er /lei ude |
|              |                                    |           |                     |            |             | <u>ID/KWN</u> | <u>kg/kwn</u>  |
|              | Wet rod mill, rods:                | 0.35*(    | Ai-0.020)^0         | 0.24       | 0.11        |               |                |
|              | Wet rod mill, liners:              | 0.035     | *(Ai-0.015)^        | 0.30       |             | 0.020         | 0.009          |
|              | Dell Mill (averflow and events die |           | <i>t</i> : (n = = ) |            |             |               |                |
|              | Ball Will (Overnow and grate dis   | charge    |                     | 20         |             | 0.40          | 0.005          |
|              | Wet ball mill, balls:              | 0.35"(    | AI-0.015)^0         | .33        |             | 0.19          | 0.085          |
|              | Wet ball mill, liners:             | 0.026     | ^(AI-0.015)^        | 0.30       |             | 0.015         | 0.0067         |
|              | Ball Mill (grate discharge type)   |           |                     |            |             |               |                |
|              | Dry ball mill, balls:              | 0.05*(    | 'Ai)^0.5            |            |             | 0.020         | 0.009          |
|              | Dry ball mill, liners:             | 0.005     | *(Ai)^0.5           |            |             | 0.0020        | 0.0009         |
|              |                                    |           | ( ) ) ) )           |            |             |               |                |
|              | Crushers (gyratory, jaw, cone)     |           |                     |            |             |               |                |
|              | Crusher, liners:                   | (Ai+0.    | 22)/11              |            |             | 0.035         | 0.016          |
|              |                                    |           |                     |            |             |               |                |
|              | Roll crusher, shells:              | (Ai/10    | )^0.67              |            |             | 0.065         | 0.029          |

## STANDARD BOND ABRASION TEST

| Project No.: | 18559-01 | Date:           | 8-Jul-21           |
|--------------|----------|-----------------|--------------------|
| Sample:      | S Comp   | SGS Laboratory: | Lakefield (Canada) |

|        | Product Particle Size Analysis |        |            |            |            |  |  |  |  |  |  |  |
|--------|--------------------------------|--------|------------|------------|------------|--|--|--|--|--|--|--|
| Si     | ize                            | Weight | % Re       | etained    | % Passing  |  |  |  |  |  |  |  |
| Mesh   | μm                             | grams  | Individual | Cumulative | Cumulative |  |  |  |  |  |  |  |
| 1/2 in | 12,700                         | 47.2   | 5.83       | 5.83       | 94.2       |  |  |  |  |  |  |  |
| 3/8 in | 9,500                          | 55.2   | 6.82       | 12.7       | 87.3       |  |  |  |  |  |  |  |
| 3      | 6,700                          | 22.1   | 2.73       | 15.4       | 84.6       |  |  |  |  |  |  |  |
| 4      | 4,750                          | 17.4   | 2.15       | 17.5       | 82.5       |  |  |  |  |  |  |  |
| 6      | 3,350                          | 16.2   | 2.00       | 19.5       | 80.5       |  |  |  |  |  |  |  |
| 8      | 2,360                          | 28.9   | 3.57       | 23.1       | 76.9       |  |  |  |  |  |  |  |
| 10     | 1,700                          | 29.7   | 3.67       | 26.8       | 73.2       |  |  |  |  |  |  |  |
| 14     | 1,180                          | 30.4   | 3.76       | 30.5       | 69.5       |  |  |  |  |  |  |  |
| 20     | 850                            | 35.9   | 4.44       | 35.0       | 65.0       |  |  |  |  |  |  |  |
| 28     | 600                            | 47.6   | 5.88       | 40.8       | 59.2       |  |  |  |  |  |  |  |
| 35     | 425                            | 65.5   | 8.09       | 48.9       | 51.1       |  |  |  |  |  |  |  |
| 48     | 300                            | 79.4   | 9.81       | 58.7       | 41.3       |  |  |  |  |  |  |  |
| 65     | 212                            | 78.9   | 9.75       | 68.5       | 31.5       |  |  |  |  |  |  |  |
| 100    | 150                            | 49.2   | 6.08       | 74.6       | 25.4       |  |  |  |  |  |  |  |
| -100   | -150                           | 205.8  | 25.4       | 100.0      | -          |  |  |  |  |  |  |  |
|        | Total                          | 809.4  | 100.0      | K80        | 3,203      |  |  |  |  |  |  |  |



158

| Project No.: | 18559-01                          |           |              | Date                           | (mm/dd/yy): | 7-J    | ul-21         |  |
|--------------|-----------------------------------|-----------|--------------|--------------------------------|-------------|--------|---------------|--|
| Sample:      | P Comp                            |           |              | SGS Laboratory: Lakefield (Can |             |        |               |  |
|              |                                   |           |              |                                | Technician: | OHTA   | ,             |  |
| Purpose:     | To determine the Abrasion Inde    | ex of the | e sample     |                                |             |        |               |  |
| Procedure:   | The equipment and procedure       | duplica   | te the Bond  | method for                     |             |        |               |  |
|              | determining an abrasion index.    |           |              |                                |             |        |               |  |
| Feed:        | 1,600 grams minus 3/4 inch plu    | ıs 1/2 ir | nch fraction |                                |             |        |               |  |
| Number of c  | ycles of 15 minutes: 4 C          | ycles     |              |                                |             |        |               |  |
|              | Reading:                          |           | #1           | #2                             | Average     |        |               |  |
| Results:     | Original paddle weight, grams:    |           | 94.1382      | 94.1380                        | 94.1381     |        |               |  |
|              | Final paddle weight, grams:       |           | 93.9815      | 93.9808                        | 93.9812     |        |               |  |
|              | Abrasion Index, Ai:               |           |              |                                | 0.157       |        |               |  |
|              |                                   |           |              |                                |             |        |               |  |
| Predicted W  | ear Pates:                        |           |              |                                |             |        |               |  |
| Fredicied W  |                                   |           |              |                                |             | lb/kwh | <u>kg/kwh</u> |  |
|              | Wet rod mill, rods:               | 0.35*(    | (Ai-0.020)^0 | .20                            |             | 0.24   | 0.11          |  |
|              | Wet rod mill, liners:             | 0.035     | *(Ai-0.015)^ | 0.30                           |             | 0.019  | 0.009         |  |
|              | Ball Mill (overflow and grate dis | charge    | types)       |                                |             |        |               |  |
|              | Wet ball mill. balls:             | 0.35*(    | (Ai-0.015)^0 | .33                            |             | 0.18   | 0.083         |  |
|              | Wet ball mill, liners:            | 0.026     | *(Ai-0.015)^ | 0.30                           |             | 0.014  | 0.0066        |  |
|              | Ball Mill (grate discharge type)  |           |              |                                |             |        |               |  |
|              | Dry ball mill, balls:             | 0.05*(    | (Ai)^0.5     |                                |             | 0.020  | 0.009         |  |
|              | Dry ball mill, liners:            | 0.005     | *(Ai)^0.5    |                                |             | 0.0020 | 0.0009        |  |
|              | Crushers (gyratory, jaw, cone)    |           |              |                                |             |        |               |  |
|              | Crusher, liners:                  | (Ai+0.    | .22)/11      |                                |             | 0.034  | 0.016         |  |
|              | Roll crusher, shells:             | (Ai/10    | )^0.67       |                                |             | 0.062  | 0.028         |  |

| Project No.: | 18559-01 | Date:           | 7-Jul-21           |
|--------------|----------|-----------------|--------------------|
| Sample:      | P Comp   | SGS Laboratory: | Lakefield (Canada) |

|        | Product Particle Size Analysis |        |            |            |            |  |  |  |  |  |  |  |
|--------|--------------------------------|--------|------------|------------|------------|--|--|--|--|--|--|--|
| Si     | ize                            | Weight | % Re       | etained    | % Passing  |  |  |  |  |  |  |  |
| Mesh   | μm                             | grams  | Individual | Cumulative | Cumulative |  |  |  |  |  |  |  |
| 1/2 in | 12,700                         | 59.3   | 7.70       | 7.70       | 92.3       |  |  |  |  |  |  |  |
| 3/8 in | 9,500                          | 111.2  | 14.4       | 22.1       | 77.9       |  |  |  |  |  |  |  |
| 3      | 6,700                          | 48.4   | 6.28       | 28.4       | 71.6       |  |  |  |  |  |  |  |
| 4      | 4,750                          | 32.1   | 4.17       | 32.6       | 67.4       |  |  |  |  |  |  |  |
| 6      | 3,350                          | 27.8   | 3.61       | 36.2       | 63.8       |  |  |  |  |  |  |  |
| 8      | 2,360                          | 22.0   | 2.86       | 39.0       | 61.0       |  |  |  |  |  |  |  |
| 10     | 1,700                          | 15.6   | 2.02       | 41.1       | 58.9       |  |  |  |  |  |  |  |
| 14     | 1,180                          | 12.6   | 1.64       | 42.7       | 57.3       |  |  |  |  |  |  |  |
| 20     | 850                            | 12.1   | 1.57       | 44.3       | 55.7       |  |  |  |  |  |  |  |
| 28     | 600                            | 14.7   | 1.91       | 46.2       | 53.8       |  |  |  |  |  |  |  |
| 35     | 425                            | 23.1   | 3.00       | 49.2       | 50.8       |  |  |  |  |  |  |  |
| 48     | 300                            | 35.9   | 4.66       | 53.8       | 46.2       |  |  |  |  |  |  |  |
| 65     | 212                            | 55.3   | 7.18       | 61.0       | 39.0       |  |  |  |  |  |  |  |
| 100    | 150                            | 45.2   | 5.87       | 66.9       | 33.1       |  |  |  |  |  |  |  |
| -100   | -150                           | 255.1  | 33.1       | 100.0      | -          |  |  |  |  |  |  |  |
|        | Total                          | 770 4  | 100.0      | K80        | 9.948      |  |  |  |  |  |  |  |



| Test: F1   | Project: 18559-01                      | <b>Date:</b> June 24, 2021 | Operator: Deepak                   |
|------------|----------------------------------------|----------------------------|------------------------------------|
| Purpose:   | Conduct intitial rougher kinetics test |                            |                                    |
| Procedure: | As outlined below.                     |                            |                                    |
| Feed:      | 2kg SN Comp -10 mesh                   | Freezer\SEC-11C            |                                    |
| Grind:     | 34 minutes at 65% solids in 2 kg Rod M | Aill #3                    | Comb Prod P <sub>80</sub> = 100 µm |

#### Conditions:

Regrind

N/A

|                           |             | Reagents added, grams per tonne |             |     |      |   |  |       | Time, minutes |       |            |         |
|---------------------------|-------------|---------------------------------|-------------|-----|------|---|--|-------|---------------|-------|------------|---------|
| Stage                     | Lime        | CusO4                           |             | PAX | MIBC |   |  | Grind | Cond.         | Froth | рН         | ORP, mV |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
| Grind                     | 625         |                                 |             | 5   |      |   |  | 34    |               |       | 9.4        | -26     |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
| Rougher 1                 | 0           |                                 |             |     | 0    |   |  |       | 1             | 1     | 9.4        | -26     |
| Rougher 2                 | 0           |                                 |             | 5   | 0    |   |  |       | 1             | 2     | 9.3        | 31      |
| Rougher 3                 | 0           |                                 |             | 5   | 0    |   |  |       | 1             | 2     | 9.2        | 41      |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
| Rougher 4                 | 0           |                                 |             | 10  | 0    |   |  |       | 1             | 3     | natural pH | 54      |
| Rougher 5                 | 0           |                                 |             | 20  | 0    |   |  |       | 1             | 5     | natural pH | 41      |
| Rougher 6                 | 0           | 50                              |             | 20  | 0    |   |  |       | 1             | 5     | natural pH | 59      |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
| Magnetic separation on Ro | Tails by Ha | andheld mag                     | gnet 1350 G |     |      |   |  |       |               |       |            |         |
| Mag Scav                  |             |                                 |             |     |      |   |  |       |               | 5     |            |         |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
|                           |             |                                 |             |     |      |   |  |       |               |       |            |         |
| Total                     | 625         | 50                              |             | 60  | 0    | 0 |  |       |               | 23    |            |         |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

#### Metallurgical Balance

| Dreduct           | Weight |             | Assays, %    |               |      |       |      |      | % Distribution |      |      |      |      |      |      |      |      |
|-------------------|--------|-------------|--------------|---------------|------|-------|------|------|----------------|------|------|------|------|------|------|------|------|
| Product           | g      | %           | Cu           | Ni            | S    | Other | Ср   | Pn   | Po             | Ga   | Cu   | Ni   | S    | Ср   | Pn   | Ро   | Ga   |
| Ro Conc 1         | 138.8  | 6.9         | 13.1         | 7.82          | 32.9 | 46.2  | 38.0 | 21.3 | 32.7           | 8.06 | 86.9 | 46.3 | 13.4 | 86.9 | 55.3 | 5.8  | 1.0  |
| Ro Conc 2         | 226.2  | 11.2        | 1.01         | 2.80          | 34.8 | 61.4  | 2.93 | 6.63 | 82.0           | 8.40 | 10.9 | 27.0 | 23.1 | 10.9 | 28.1 | 23.6 | 1.7  |
| Ro Conc 3         | 156.3  | 7.8         | 0.15         | 1.29          | 35.4 | 63.2  | 0.43 | 2.33 | 89.6           | 7.68 | 1.1  | 8.6  | 16.2 | 1.1  | 6.8  | 17.8 | 1.1  |
| Ro Conc 4         | 206.0  | 10.2        | 0.05         | 0.93          | 34.9 | 64.1  | 0.16 | 1.34 | 89.4           | 9.15 | 0.5  | 8.2  | 21.1 | 0.5  | 5.2  | 23.4 | 1.7  |
| Ro Conc 5         | 189.6  | 9.4         | 0.03         | 0.75          | 33.1 | 66.1  | 0.07 | 0.89 | 85.1           | 13.9 | 0.2  | 6.1  | 18.4 | 0.2  | 3.2  | 20.6 | 2.4  |
| Ro Conc 6         | 70.6   | 3.5         | 0.03         | 0.64          | 31.5 | 67.8  | 0.09 | 0.64 | 81.2           | 18.1 | 0.1  | 1.9  | 6.5  | 0.1  | 0.8  | 7.3  | 1.1  |
| Mag Scav Conc     | 149.5  | 7.4         | <0.01        | 0.05          | 1.05 | 98.9  | 0.01 | 0.04 | 2.68           | 97.3 | 0.0  | 0.3  | 0.5  | 0.0  | 0.1  | 0.5  | 13.0 |
| Mag Scav Tails    | 878.3  | 43.6        | <0.01        | 0.04          | 0.35 | 99.6  | 0.01 | 0.03 | 0.87           | 99.1 | 0.2  | 1.5  | 0.9  | 0.2  | 0.5  | 1.0  | 78.0 |
| Head (Calc.)      | 2015.3 | 100         | 1.04         | 1.16          | 16.9 | 80.9  | 3.01 | 2.65 | 39.0           | 55.4 | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| Head (Dir.)       |        |             | 1.07         | 1.17          | 16.5 | 81.3  | 3.10 | 2.69 | 37.7           | 56.5 |      |      |      |      |      |      |      |
|                   | . (    | ).005 was u | sed for <0.0 | 01 calculatio | n    |       |      |      |                |      | •    |      |      |      |      |      |      |
| Combined Products |        |             |              |               |      |       |      |      |                |      |      |      |      |      |      |      |      |
| Ro Conc 1         |        | 6.9         | 13.1         | 7.82          | 32.9 | 46.2  | 38.0 | 21.3 | 32.7           | 8.1  | 86.9 | 46.3 | 13.4 | 86.9 | 55.3 | 5.8  | 1.0  |
| Ro Conc 1-2       |        | 18.1        | 5.61         | 4.71          | 34.1 | 55.6  | 16.3 | 12.2 | 63.3           | 8.3  | 97.8 | 73.4 | 36.4 | 97.8 | 83.4 | 29.4 | 2.7  |
| Ro Conc 1-3       |        | 25.9        | 3.97         | 3.68          | 34.5 | 57.9  | 11.5 | 9.24 | 71.2           | 8.1  | 98.9 | 82.0 | 52.7 | 98.9 | 90.2 | 47.2 | 3.8  |
| Ro Conc 4         |        | 10.2        | 0.05         | 0.93          | 34.9 | 64.1  | 0.16 | 1.34 | 89.4           | 9.1  | 0.5  | 8.2  | 21.1 | 0.5  | 5.2  | 23.4 | 1.7  |
| Ro Conc 4-5       |        | 19.6        | 0.04         | 0.84          | 34.0 | 65.1  | 0.12 | 1.12 | 87.3           | 11.4 | 0.8  | 14.2 | 39.5 | 0.8  | 8.3  | 44.0 | 4.0  |
| Ro Conc 4-6       |        | 23.1        | 0.04         | 0.81          | 33.7 | 65.5  | 0.11 | 1.05 | 86.4           | 12.4 | 0.9  | 16.2 | 46.0 | 0.9  | 9.2  | 51.3 | 5.2  |
| Mag Scav Conc     |        | 7.4         | 0.01         | 0.05          | 1.05 | 98.9  | 0.01 | 0.04 | 2.68           | 97.3 | 0.0  | 0.3  | 0.5  | 0.0  | 0.1  | 0.5  | 13.0 |
| Ro Conc 1-6       |        | 49.0        | 2.11         | 2.33          | 34.1 | 61.5  | 6.13 | 5.37 | 78.4           | 10.1 | 99.8 | 98.1 | 98.6 | 99.8 | 99.4 | 98.5 | 9.0  |
| Po Ro Feed        |        | 74.1        | 0.02         | 0.28          | 10.8 | 88.9  | 0.0  | 0.35 | 27.7           | 71.9 | 1.1  | 18.0 | 47.3 | 1.1  | 9.8  | 52.8 | 96.2 |

|                        |      |       | Time, minutes |       |  |       |       |       |
|------------------------|------|-------|---------------|-------|--|-------|-------|-------|
| Stage                  | Lime | CuSO4 | PAX           | MIBC* |  | Grind | Cond. | Froth |
| Grind                  | 625  |       | 5             |       |  | 34    |       |       |
| Cu/Ni Rougher No. 1    | 0    |       |               | 0     |  |       | 1     | 1     |
| Cu/Ni Rougher No. 2    | 0    |       | 5             | 0     |  |       | 1     | 2     |
| Cu/Ni Rougher No. 3    | 0    |       | 5             | 0     |  |       | 1     | 2     |
| Regrind (2kg Rod Mill) | 150  |       | 1             |       |  | 12    |       |       |
| Cu/Ni 1st Cleaner No.1 | 10   |       |               | 0     |  |       | 1     | 2     |
| Cu/Ni 1st Cleaner No.2 | 5    |       | 1             | 0     |  |       | 1     | 2     |
| Cu/Ni 1st Cleaner No.3 | 20   |       | 1             | 0     |  |       | 1     | 3     |
| Po Rougher No. 1       |      | 50    | 10            | 0     |  |       | 1     | 3     |
| Po Rougher No. 2       |      |       | 20            | 0     |  |       | 1     | 5     |

0

| Procedure: | As outlined below.                          |                 |             |                   |               |
|------------|---------------------------------------------|-----------------|-------------|-------------------|---------------|
| Feed:      | 2kg SN Comp -10 mesh                        | Freezer\SEC-11C |             |                   |               |
| Grind:     | 34 minutes at 65% solids in 2 kg Rod Mill # | \$3             | Po Ro Tails | P <sub>80</sub> = | 105 µm        |
| Regrind    | 12 minutes at 50% solids in 2 kg Rod Mill f | or Cu/Ni R.Conc |             | P <sub>80</sub> = | 34 µm Malvern |

Date:

June 24, 2021

Operator: Deepak

P<sub>80</sub> =

33 µm Malvern

5

1

pН

9.4

9.4

9.3

9.2

9.2

9.5

9.5

9.5

natural pH

natural pH

natural pH

ORP, mV

-92

-92

-3

44

75

75

79

89

21

14

23

12 minutes at 50% solids in 2 kg Rod Mill for Cu/Ni R.Conc 24 minutes at 50% solids in 2 kg Rod Mill for Po R.Conc

Project: 18559-01

Conduct intitial open-circuit cleaning test.

Conditions:

Po Rougher No. 3

Test: F2

Purpose:

| Po Cleaning on Po Ro Cor | n 1-3 |    |    |   |   |   |    |   |    |         |              |
|--------------------------|-------|----|----|---|---|---|----|---|----|---------|--------------|
| Regrind (2kg Rod Mill)   | 200   |    | 1  |   |   |   | 24 |   |    | 9.2     | -24          |
|                          |       |    |    |   |   |   |    |   |    |         |              |
| Po 1st Cleaner No.1      | 0     |    |    | 0 |   |   |    | 1 | 2  | 9.2     | -24          |
| Po 1st Cleaner No.2      | 10    |    | 1  | 0 |   |   |    | 1 | 2  | 9.0     | 75           |
| Po 1st Cleaner No.3      | 5     |    | 1  | 0 |   |   |    | 1 | 2  | 9.0     | 75           |
| Po 1st Cleaner No.4      | 15    |    | 2  | 0 |   |   |    | 1 | 2  | 9.4     | 61           |
|                          |       |    |    |   |   |   |    |   |    |         |              |
| Total                    | 415   | 50 | 73 | 0 | 0 | 0 |    |   | 33 |         |              |
|                          |       | -  |    |   |   | - |    |   |    | * Add a | as required. |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

20

#### Metallurgical Balance

|                           | We       | ight        |               |               |      | Assa  | ys, % |      |      |      |      |      | %    | 6 Distributi | on   |      |      | ]    | -        |      |
|---------------------------|----------|-------------|---------------|---------------|------|-------|-------|------|------|------|------|------|------|--------------|------|------|------|------|----------|------|
| Product                   | g        | %           | Cu            | Ni            | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1       | 158.5    | 7.8         | 11.3          | 7.85          | 35.4 | 45.5  | 32.8  | 21.2 | 44.0 | 2.05 | 86.6 | 52.4 | 16.9 | 86.6         | 61.5 | 9.2  | 0.3  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2       | 63.1     | 3.1         | 2.70          | 4.67          | 35.9 | 56.7  | 7.83  | 11.9 | 75.9 | 4.34 | 8.2  | 12.4 | 6.8  | 8.2          | 13.8 | 6.3  | 0.2  |      |          |      |
| Cu/Ni 1st Cl Conc 3       | 49.3     | 2.4         | 0.45          | 2.30          | 36.2 | 61.1  | 1.30  | 5.16 | 88.4 | 5.12 | 1.1  | 4.8  | 5.4  | 1.1          | 4.7  | 5.7  | 0.2  |      |          |      |
| Cu/Ni 1st Cl Tails        | 132.4    | 6.5         | 0.23          | 1.23          | 30.6 | 67.9  | 0.67  | 2.33 | 76.9 | 20.1 | 1.5  | 6.9  | 12.2 | 1.5          | 5.7  | 13.4 | 2.3  |      |          |      |
| Po 1st CI Conc 1          | 300.0    | 14.8        | 0.10          | 1.03          | 35.5 | 63.4  | 0.29  | 1.60 | 90.6 | 7.54 | 1.5  | 13.0 | 32.1 | 1.5          | 8.8  | 35.8 | 2.0  |      |          |      |
| Po 1st CI Conc 2          | 127.5    | 6.3         | 0.08          | 0.85          | 34.8 | 64.3  | 0.24  | 1.12 | 89.2 | 9.43 | 0.5  | 4.6  | 13.4 | 0.5          | 2.6  | 15.0 | 1.0  |      |          |      |
| Po 1st CI Conc 3          | 68.0     | 3.4         | 0.06          | 0.71          | 34.4 | 64.8  | 0.19  | 0.73 | 88.6 | 10.5 | 0.2  | 2.0  | 7.1  | 0.2          | 0.9  | 7.9  | 0.6  |      |          |      |
| Po 1st CI Conc 4          | 18.2     | 0.9         | 0.06          | 0.67          | 33.5 | 65.8  | 0.19  | 0.65 | 86.3 | 12.9 | 0.1  | 0.5  | 1.8  | 0.1          | 0.2  | 2.1  | 0.2  |      |          |      |
| Po 1st Cl Tails           | 59.4     | 2.9         | 0.06          | 0.40          | 13.3 | 86.2  | 0.16  | 0.59 | 33.9 | 65.4 | 0.2  | 1.0  | 2.4  | 0.2          | 0.6  | 2.6  | 3.4  |      |          |      |
| Po Ro Tails               | 1046.7   | 51.7        | <0.01         | 0.06          | 0.59 | 99.3  | 0.01  | 0.07 | 1.5  | 98.5 | 0.3  | 2.5  | 1.9  | 0.3          | 1.3  | 2.0  | 89.7 |      |          |      |
| Head (Calc.)              | 2023.1   | 100         | 1.02          | 1.17          | 16.4 | 81.4  | 2.96  | 2.70 | 37.6 | 56.8 | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)               |          |             | 1.07          | 1.17          | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |              |      |      |      |      |          |      |
|                           |          | 0.005 was u | used for <0.0 | )1 calculatio | n    |       |       |      |      |      |      |      |      |              |      |      |      | Stag | je Recov | ery  |
| Combined Products         |          |             |               |               |      |       |       |      |      |      |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1       |          | 7.8         | 11.3          | 7.85          | 35.4 | 45.5  | 32.8  | 21.2 | 44.0 | 2.0  | 86.6 | 52.4 | 16.9 | 86.6         | 61.5 | 9.2  | 0.3  | 88.9 | 71.9     | 26.5 |
| Cu/Ni 1st Cl Conc 1-2     |          | 11.0        | 8.85          | 6.94          | 35.5 | 48.7  | 25.7  | 18.6 | 53.1 | 2.7  | 94.8 | 64.8 | 23.8 | 94.8         | 75.3 | 15.5 | 0.5  | 97.4 | 87.9     | 44.7 |
| Cu/Ni 1st Cl Conc 1-3     |          | 13.4        | 7.32          | 6.10          | 35.7 | 50.9  | 21.2  | 16.1 | 59.5 | 3.1  | 95.9 | 69.5 | 29.1 | 95.9         | 79.9 | 21.2 | 0.7  | 98.5 | 93.4     | 61.3 |
| Cu/Ni Ro Conc 1-3         |          | 19.9        | 4.99          | 4.50          | 34.0 | 56.5  | 14.5  | 11.6 | 65.2 | 8.7  | 97.4 | 76.4 | 41.4 | 97.4         | 85.6 | 34.6 | 3.1  |      |          |      |
| Po 1st CI Conc 1          |          | 14.8        | 0.10          | 1.03          | 35.5 | 63.4  | 0.29  | 1.60 | 90.6 | 7.5  | 1.5  | 13.0 | 32.1 | 1.5          | 8.8  | 35.8 | 2.0  | 60.8 | 66.7     | 56.4 |
| Po 1st CI Conc 1-2        |          | 21.1        | 0.09          | 0.98          | 35.3 | 63.6  | 0.28  | 1.45 | 90.2 | 8.1  | 2.0  | 17.6 | 45.5 | 2.0          | 11.4 | 50.7 | 3.0  | 82.2 | 86.5     | 80.1 |
| Po 1st CI Conc 1-3        |          | 24.5        | 0.09          | 0.94          | 35.2 | 63.8  | 0.26  | 1.36 | 89.9 | 8.4  | 2.2  | 19.6 | 52.6 | 2.2          | 12.3 | 58.7 | 3.6  | 91.0 | 93.4     | 92.6 |
| Po 1st CI Conc 1-4        |          | 25.4        | 0.09          | 0.93          | 35.1 | 63.9  | 0.26  | 1.33 | 89.8 | 8.6  | 2.2  | 20.1 | 54.4 | 2.2          | 12.5 | 60.7 | 3.8  | 93.4 | 95.1     | 95.8 |
| Po Ro Conc 1-3            |          | 28.3        | 0.09          | 0.88          | 32.8 | 66.2  | 0.25  | 1.25 | 84.0 | 14.5 | 2.4  | 21.1 | 56.8 | 2.4          | 13.2 | 63.4 | 7.2  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro ( | Conc 1-3 | 48.3        | 2.11          | 2.37          | 33.3 | 62.2  | 6.13  | 5.52 | 76.3 | 12.1 | 99.7 | 97.5 | 98.1 | 99.7         | 98.7 | 98.0 | 10.3 | 1    |          |      |
| Po Ro Feed                |          | 80.1        | 0.03          | 0.35          | 12.0 | 87.6  | 0.10  | 0.49 | 30.7 | 68.7 | 2.6  | 23.6 | 58.6 | 2.6          | 14.4 | 65.4 | 96.9 |      |          |      |

| Test: F3   | Project:    | 18559-01                       | Date:   | June 25, 2021 | Operator: Deep | pak               |        |
|------------|-------------|--------------------------------|---------|---------------|----------------|-------------------|--------|
| Purpose:   | Conduct ro  | ougher kinetics test, target ~ | 150 um  |               |                |                   |        |
| Procedure: | As outlined | below.                         |         |               |                |                   |        |
| Feed:      | 2kg SN Co   | omp -10 mesh                   | Fre     | eezer\SEC-11C |                |                   |        |
| Grind:     | 18 minutes  | at 65% solids in 2 kg Rod M    | /ill #3 |               | Comb Prod      | P <sub>80</sub> = | 162 µm |

#### Conditions:

Regrind

N/A

|                     | Reagents added, grams per tonne Time, minutes |       |  |     |      |   |       |       |       |            |         |
|---------------------|-----------------------------------------------|-------|--|-----|------|---|-------|-------|-------|------------|---------|
| Stage               | Lime                                          | CusO4 |  | PAX | MIBC |   | Grind | Cond. | Froth | pН         | ORP, mV |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
| Grind               | 550                                           |       |  | 5   |      |   | 18    |       |       | 9.3        | 135     |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
| Cu/Ni Rougher No. 1 | 0                                             |       |  |     | 0    |   |       | 1     | 1     | 9.3        | 135     |
| Cu/Ni Rougher No. 2 | 0                                             |       |  | 5   | 0    |   |       | 1     | 2     | 9.2        | 119     |
| Cu/Ni Rougher No. 3 | 0                                             |       |  | 5   | 0    |   |       | 1     | 2     | 9.0        | 98      |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
| Po Rougher No. 1    | 0                                             |       |  | 5   | 0    |   |       | 1     | 3     | natural pH | 111     |
| Po Rougher No. 2    | 0                                             |       |  | 5   | 2.5  |   |       | 1     | 5     | natural pH | 122     |
| Po Rougher No. 3    | 0                                             |       |  | 5   | 2.5  |   |       | 1     | 5     | natural pH | 192     |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
|                     |                                               |       |  |     |      |   |       |       |       |            |         |
| Total               | 0                                             | 0     |  | 25  | 5    | 0 |       |       | 18    |            |         |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

#### Metallurgical Balance

Cu/Ni & Po Ro Conc 1-3

Po Ro Feed

37.0

77.7

2.72

0.03

2.82

0.35

34.6

11.8

59.8

87.9

7.88

0.1

| Dreduct           | We     | eight       |              |               |      | Assa  | ys, % |      |      |      |      |      | 9    | <b>% Distributi</b> | on   |      |      |
|-------------------|--------|-------------|--------------|---------------|------|-------|-------|------|------|------|------|------|------|---------------------|------|------|------|
| Product           | g      | %           | Cu           | Ni            | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср                  | Pn   | Po   | Ga   |
| Cu/Ni Ro Conc 1   | 128.7  | 6.4         | 11.7         | 6.84          | 32.8 | 48.7  | 33.9  | 18.5 | 38.5 | 9.09 | 73.8 | 38.0 | 12.5 | 73.8                | 45.0 | 6.4  | 1.0  |
| Cu/Ni Ro Conc 2   | 184.7  | 9.2         | 2.38         | 3.60          | 34.4 | 59.6  | 6.90  | 8.95 | 75.4 | 8.74 | 21.5 | 28.7 | 18.9 | 21.5                | 31.3 | 18.0 | 1.4  |
| Cu/Ni Ro Conc 3   | 133.9  | 6.7         | 0.34         | 1.65          | 35.5 | 62.5  | 0.99  | 3.35 | 88.4 | 7.22 | 2.2  | 9.5  | 14.1 | 2.2                 | 8.5  | 15.3 | 0.9  |
| Po Ro Conc 1      | 127.8  | 6.4         | 0.11         | 1.23          | 35.5 | 63.2  | 0.32  | 2.16 | 90.1 | 7.45 | 0.7  | 6.8  | 13.5 | 0.7                 | 5.2  | 14.8 | 0.9  |
| Po Ro Conc 2      | 97.6   | 4.9         | 0.07         | 1.00          | 35.2 | 63.7  | 0.21  | 1.52 | 89.9 | 8.33 | 0.3  | 4.2  | 10.2 | 0.3                 | 2.8  | 11.3 | 0.7  |
| Po Ro Conc 3      | 69.0   | 3.4         | 0.06         | 1.00          | 34.7 | 64.2  | 0.16  | 1.54 | 88.7 | 9.64 | 0.2  | 3.0  | 7.1  | 0.2                 | 2.0  | 7.9  | 0.6  |
| Po Ro Tails       | 1264.8 | 63.0        | 0.02         | 0.18          | 6.30 | 93.5  | 0.06  | 0.22 | 16.1 | 83.6 | 1.2  | 9.8  | 23.7 | 1.2                 | 5.2  | 26.3 | 94.5 |
| Head (Calc.)      | 2006.5 | 100         | 1.02         | 1.16          | 16.8 | 81.1  | 2.95  | 2.63 | 38.6 | 55.8 | 100  | 100  | 100  | 100                 | 100  | 100  | 100  |
| Head (Dir.)       |        |             | 1.07         | 1.17          | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |                     |      |      |      |
|                   | . (    | 0.005 was u | used for <0. | 01 calculatio | n    |       |       |      |      |      |      |      |      |                     |      |      |      |
| Combined Products |        |             |              |               |      |       |       |      |      |      |      |      |      |                     |      |      |      |
| Cu/Ni Ro Conc 1   |        | 6.4         | 11.7         | 6.84          | 32.8 | 48.7  | 33.9  | 18.5 | 38.5 | 9.1  | 73.8 | 38.0 | 12.5 | 73.8                | 45.0 | 6.4  | 1.0  |
| Cu/Ni Ro Conc 1-2 |        | 15.6        | 6.21         | 4.93          | 33.7 | 55.1  | 18.0  | 12.9 | 60.3 | 8.9  | 95.3 | 66.7 | 31.4 | 95.3                | 76.3 | 24.4 | 2.5  |
| Cu/Ni Ro Conc 1-3 |        | 22.3        | 4.45         | 3.95          | 34.3 | 57.3  | 12.9  | 10.0 | 68.7 | 8.4  | 97.5 | 76.2 | 45.5 | 97.5                | 84.8 | 39.6 | 3.4  |
| Po Ro Conc 1      |        | 6.4         | 0.11         | 1.23          | 35.5 | 63.2  | 0.32  | 2.16 | 90.1 | 7.5  | 0.7  | 6.8  | 13.5 | 0.7                 | 5.2  | 14.8 | 0.9  |
| Po Ro Conc 1-2    |        | 11.2        | 0.09         | 1.13          | 35.4 | 63.4  | 0.27  | 1.88 | 90.0 | 7.8  | 1.0  | 11.0 | 23.7 | 1.0                 | 8.0  | 26.2 | 1.6  |
| Po Ro Conc 1-3    |        | 14.7        | 0.09         | 1.10          | 35.2 | 63.6  | 0.25  | 1.80 | 89.7 | 8.3  | 1.2  | 14.0 | 30.8 | 1.2                 | 10.1 | 34.1 | 2.2  |

6.75

0.52

77.0

30.0

8.3

69.4

98.8

2.5

90.2

23.8

76.3

54.5

98.8

2.5

94.8

15.2

73.7

60.4

5.5

96.6

| Test: F4   | Project: 18559-01                     | Date: June 25, 2021 | <b>Operator:</b> Deepak     |
|------------|---------------------------------------|---------------------|-----------------------------|
| Purpose:   | Conduct rougher kinetics test, target | ~75 um              |                             |
| Procedure: | As outlined below.                    |                     |                             |
| Feed:      | 2kg SN Comp -10 mesh                  | Freezer\SEC-11C     |                             |
| Grind:     | 54 minutes at 65% solids in 2 kg Roc  | Mill #3             | Comb Prod P <sub>80</sub> = |

#### Conditions:

Regrind

N/A

|                     |      | Reagents added, grams per tonne Time, minutes |  |     |      |   |       |       |       |            |         |
|---------------------|------|-----------------------------------------------|--|-----|------|---|-------|-------|-------|------------|---------|
| Stage               | Lime | CusO4                                         |  | PAX | MIBC |   | Grind | Cond. | Froth | pН         | ORP, mV |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
| Grind               | 700  |                                               |  | 5   |      |   | 54    |       |       | 9.2        | 2       |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
| Cu/Ni Rougher No. 1 | 0    |                                               |  |     | 0    |   |       | 1     | 1     | 9.2        | 2       |
| Cu/Ni Rougher No. 2 | 0    |                                               |  | 5   | 0    |   |       | 1     | 2     | 9.0        | 112     |
| Cu/Ni Rougher No. 3 | 20   |                                               |  | 5   | 0    |   |       | 1     | 2     | 9.0        | 0       |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
| Po Rougher No. 1    | 0    |                                               |  | 5   | 0    |   |       | 1     | 3     | natural pH | 67      |
| Po Rougher No. 2    | 0    |                                               |  | 5   | 0    |   |       | 1     | 5     | natural pH | 137     |
| Po Rougher No. 3    | 0    |                                               |  | 5   | 0    |   |       | 1     | 5     | natural pH | 145     |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
|                     |      |                                               |  |     |      |   |       |       |       |            |         |
| Total               | 20   | 0                                             |  | 25  | 0    | 0 |       |       | 18    |            |         |

\* Add as required.

71 µm

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

#### Metallurgical Balance

| Draduat                | We     | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | 9    | % Distributi | on   |      |      |
|------------------------|--------|------|------|------|------|-------|-------|------|------|------|------|------|------|--------------|------|------|------|
| Product                | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |
| Cu/Ni Ro Conc 1        | 71.9   | 3.6  | 13.4 | 7.94 | 31.4 | 47.3  | 38.8  | 21.7 | 27.7 | 11.8 | 47.4 | 24.5 | 6.8  | 47.4         | 29.2 | 2.6  | 0.7  |
| Cu/Ni Ro Conc 2        | 137.0  | 6.8  | 6.05 | 6.08 | 32.7 | 55.2  | 17.5  | 16.1 | 55.2 | 11.2 | 40.8 | 35.7 | 13.5 | 40.8         | 41.4 | 9.9  | 1.3  |
| Cu/Ni Ro Conc 3        | 254.2  | 12.6 | 0.59 | 1.65 | 33.1 | 64.7  | 1.71  | 3.44 | 81.5 | 13.4 | 7.4  | 18.0 | 25.3 | 7.4          | 16.4 | 27.1 | 3.0  |
| Po Ro Conc 1           | 253.0  | 12.5 | 0.18 | 0.99 | 33.6 | 65.2  | 0.52  | 1.55 | 85.5 | 12.5 | 2.2  | 10.7 | 25.5 | 2.2          | 7.4  | 28.2 | 2.8  |
| Po Ro Conc 2           | 89.2   | 4.4  | 0.14 | 0.81 | 33.5 | 65.6  | 0.41  | 1.05 | 85.7 | 12.8 | 0.6  | 3.1  | 9.0  | 0.6          | 1.8  | 10.0 | 1.0  |
| Po Ro Conc 3           | 46.4   | 2.3  | 0.12 | 0.74 | 31.5 | 67.6  | 0.35  | 0.92 | 80.7 | 18.0 | 0.3  | 1.5  | 4.4  | 0.3          | 0.8  | 4.9  | 0.7  |
| Po Ro Tails            | 1168.9 | 57.8 | 0.02 | 0.13 | 4.44 | 95.4  | 0.07  | 0.14 | 11.3 | 88.4 | 1.4  | 6.5  | 15.6 | 1.4          | 3.1  | 17.3 | 90.5 |
| Head (Calc.)           | 2020.6 | 100  | 1.01 | 1.15 | 16.5 | 81.4  | 2.92  | 2.64 | 37.9 | 56.6 | 100  | 100  | 100  | 100          | 100  | 100  | 100  |
| Head (Dir.)            |        |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |              |      |      |      |
|                        |        |      |      |      |      |       |       | ÷    |      |      |      |      |      |              |      |      |      |
| Combined Products      |        |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      |
| Cu/Ni Ro Conc 1        |        | 3.6  | 13.4 | 7.94 | 31.4 | 47.3  | 38.8  | 21.7 | 27.7 | 11.8 | 47.4 | 24.5 | 6.8  | 47.4         | 29.2 | 2.6  | 0.7  |
| Cu/Ni Ro Conc 1-2      |        | 10.3 | 8.58 | 6.72 | 32.3 | 52.4  | 24.9  | 18.0 | 45.7 | 11.4 | 88.1 | 60.2 | 20.2 | 88.1         | 70.6 | 12.5 | 2.1  |
| Cu/Ni Ro Conc 1-3      |        | 22.9 | 4.19 | 3.94 | 32.7 | 59.2  | 12.2  | 10.0 | 65.3 | 12.5 | 95.5 | 78.2 | 45.5 | 95.5         | 87.0 | 39.5 | 5.1  |
| Po Ro Conc 1           |        | 12.5 | 0.18 | 0.99 | 33.6 | 65.2  | 0.52  | 1.55 | 85.5 | 12.5 | 2.2  | 10.7 | 25.5 | 2.2          | 7.4  | 28.2 | 2.8  |
| Po Ro Conc 1-2         |        | 16.9 | 0.17 | 0.94 | 33.6 | 65.3  | 0.49  | 1.42 | 85.5 | 12.5 | 2.9  | 13.8 | 34.5 | 2.9          | 9.1  | 38.2 | 3.8  |
| Po Ro Conc 1-3         |        | 19.2 | 0.16 | 0.92 | 33.3 | 65.6  | 0.47  | 1.36 | 85.0 | 13.2 | 3.1  | 15.3 | 38.9 | 3.1          | 9.9  | 43.1 | 4.5  |
| Cu/Ni & Po Ro Conc 1-3 |        | 42.2 | 2.36 | 2.56 | 33.0 | 62.1  | 6.83  | 6.07 | 74.3 | 12.8 | 98.6 | 93.5 | 84.4 | 98.6         | 96.9 | 82.7 | 9.5  |
| Po Ro Feed             |        | 77.1 | 0.06 | 0.33 | 11.6 | 88.0  | 0.17  | 0.44 | 29.7 | 69.7 | 4.5  | 21.8 | 54.5 | 4.5          | 13.0 | 60.5 | 94.9 |

| Purpose:          | Conduct open-circuit cleaning test with depress                                                                                                     | onduct open-circuit cleaning test with depressants Na2SO3 and DETA |                                                             |                |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------|--|--|--|--|--|--|
| Procedure:        | As outlined below.                                                                                                                                  |                                                                    |                                                             |                |  |  |  |  |  |  |
| Feed:             | 2kg SN Comp -10 mesh                                                                                                                                | Freezer\SEC-11C                                                    |                                                             |                |  |  |  |  |  |  |
| Grind:<br>Regrind | 34 minutes at 65% solids in 2 kg Rod Mill # 3<br>12 minutes at 50% solids in 2 kg Rod Mill for C<br>24 minutes at 50% solids in 2 kg Rod Mill for P | u/Ni R.Conc<br>o R.Conc                                            | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 35 μm<br>31 μm |  |  |  |  |  |  |

Date:

June 25, 2021

Operator: Deepak

#### Conditions:

Test: F5

Project: 18559-01

|                          |      |       | Reagents | added, gran | 1   | Time, minute |  |       |       |       |            |         |
|--------------------------|------|-------|----------|-------------|-----|--------------|--|-------|-------|-------|------------|---------|
| Stage                    | Lime | CuSO4 | Na2SO3   | DETA        | PAX | MIBC*        |  | Grind | Cond. | Froth | pН         | ORP, mV |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Grind                    | 625  |       |          |             | 5   |              |  | 34    |       |       | 9.0        | 73      |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Cu/Ni Rougher No. 1      | 0    |       |          |             |     | 0            |  |       | 1     | 1     | 9.0        | 73      |
| Cu/Ni Rougher No. 2      | 0    |       |          |             | 5   | 2.5          |  |       | 1     | 2     | 9.0        | 40      |
| Cu/Ni Rougher No. 3      | 0    |       |          |             | 5   | 0            |  |       | 1     | 2     | 9.0        | 93      |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Regrind (2kg Rod Mill)   | 150  |       | 500      | 150         | 1   |              |  | 12    |       |       | 9.6        | -50     |
| Cu/Ni 1st Cleaner No.1   | 0    |       |          |             |     | 0            |  |       | 1     | 2     | 9.6        | -50     |
| Cu/Ni 1st Cleaner No.2   | 10   |       |          |             | 1   | 0            |  |       | 1     | 2     | 9.5        | 19      |
| Cu/Ni 1st Cleaner No.3   | 10   |       |          |             | 2   | 0            |  |       | 1     | 3     | 9.5        | 37      |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Po Rougher No. 1         |      |       |          |             | 5   | 0            |  |       | 1     | 3     | natural pH | 89      |
| Po Rougher No. 2         |      |       |          |             | 5   | 0            |  |       | 1     | 5     | natural pH | 140     |
| Po Rougher No. 3         |      |       |          |             | 5   | 0            |  |       | 1     | 5     | natural pH | 118     |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Po Cleaning on Po Ro Con | 1-3  |       |          |             |     |              |  |       |       |       |            |         |
| Regrind (2kg Rod Mill)   | 200  |       | 500      | 150         | 1   |              |  | 24    |       |       | 9.6        | -82     |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Po 1st Cleaner No.1      | 0    |       |          |             |     | 0            |  |       | 1     | 2     | 9.6        | -82     |
| Po 1st Cleaner No.2      | 0    |       |          |             | 1   | 0            |  |       | 1     | 2     | 9.4        | 46      |
| Po 1st Cleaner No.3      | 0    |       |          |             | 1   | 0            |  |       | 1     | 2     | 9.2        | 73      |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
|                          |      |       |          |             |     |              |  |       |       |       |            |         |
| Total                    | 370  | 0     | 1000     | 300         | 32  | 2.5          |  |       |       | 31    |            |         |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

#### Metallurgical Balance

| Dreduct                   | Weight   |      | Assays, % |      |      |       |      |      |      |      | % Distribution |                |      |      |      |      |      | ] `  |      |      |
|---------------------------|----------|------|-----------|------|------|-------|------|------|------|------|----------------|----------------|------|------|------|------|------|------|------|------|
| Product                   | g        | %    | Cu        | Ni   | S    | Other | Ср   | Pn   | Po   | Ga   | Cu             | Ni             | S    | Ср   | Pn   | Po   | Ga   |      |      |      |
| Cu/Ni 1st Cl Conc 1       | 58.9     | 2.9  | 23.9      | 5.69 | 34.5 | 35.9  | 69.3 | 15.6 | 13.2 | 1.86 | 67.0           | 14.2           | 6.1  | 67.0 | 17.0 | 1.0  | 0.1  | 1    |      |      |
| Cu/Ni 1st Cl Conc 2       | 19.3     | 1.0  | 21.0      | 7.75 | 33.7 | 37.6  | 60.9 | 21.3 | 13.9 | 3.89 | 19.3           | 6.3            | 2.0  | 19.3 | 7.6  | 0.4  | 0.1  |      |      |      |
| Cu/Ni 1st Cl Conc 3       | 19.2     | 1.0  | 5.81      | 20.9 | 33.0 | 40.3  | 16.8 | 57.8 | 20.9 | 4.50 | 5.3            | 17.0           | 1.9  | 5.3  | 20.5 | 0.5  | 0.1  |      |      |      |
| Cu/Ni 1st Cl Tails        | 260.3    | 12.9 | 0.33      | 3.26 | 33.6 | 62.8  | 0.96 | 7.94 | 79.6 | 11.5 | 4.1            | 35.9           | 26.3 | 4.1  | 38.1 | 27.2 | 2.6  |      |      |      |
| Po 1st CI Conc 1          | 23.5     | 1.2  | 0.94      | 2.23 | 34.4 | 62.4  | 2.72 | 5.04 | 82.6 | 9.68 | 1.1            | 2.2            | 2.4  | 1.1  | 2.2  | 2.5  | 0.2  |      |      |      |
| Po 1st CI Conc 2          | 7.0      | 0.3  | 1.13      | 3.67 | 34.3 | 60.9  | 3.28 | 9.10 | 78.3 | 9.31 | 0.4            | 1.1            | 0.7  | 0.4  | 1.2  | 0.7  | 0.1  |      |      |      |
| Po 1st CI Conc 3          | 6.1      | 0.3  | 0.77      | 3.37 | 34.6 | 61.3  | 2.23 | 8.23 | 80.8 | 8.75 | 0.2            | 0.9            | 0.6  | 0.2  | 0.9  | 0.6  | 0.0  |      |      |      |
| Po 1st CI Tails           | 323.2    | 16.0 | 0.09      | 0.87 | 32.1 | 66.9  | 0.27 | 1.27 | 82.0 | 16.4 | 1.4            | 11.9           | 31.2 | 1.4  | 7.5  | 34.8 | 4.6  |      |      |      |
| Po Ro Tails               | 1302.3   | 64.5 | 0.02      | 0.19 | 7.31 | 92.5  | 0.06 | 0.21 | 18.8 | 81.0 | 1.2            | 10.5           | 28.7 | 1.2  | 5.0  | 32.1 | 92.2 |      |      |      |
| Head (Calc.)              | 2019.8   | 100  | 1.04      | 1.17 | 16.4 | 81.3  | 3.02 | 2.68 | 37.7 | 56.6 | 100            | 100            | 100  | 100  | 100  | 100  | 100  |      |      |      |
| Head (Dir.)               |          |      | 1.07      | 1.17 | 16.5 | 81.3  | 3.10 | 2.69 | 37.7 | 56.5 |                |                |      |      |      |      |      |      |      |      |
|                           |          |      |           |      |      |       |      |      |      |      |                | Stage Recovery |      |      |      |      |      |      |      |      |
| Combined Products         |          |      |           |      |      |       |      |      |      |      |                |                |      |      |      |      |      | Ср   | Pn   | Po   |
| Cu/Ni 1st Cl Conc 1       |          | 2.9  | 23.9      | 5.69 | 34.5 | 35.9  | 69.3 | 15.6 | 13.2 | 1.9  | 67.0           | 14.2           | 6.1  | 67.0 | 17.0 | 1.0  | 0.1  | 70.0 | 20.4 | 3.5  |
| Cu/Ni 1st Cl Conc 1-2     |          | 3.9  | 23.2      | 6.20 | 34.3 | 36.3  | 67.2 | 17.0 | 13.4 | 2.4  | 86.3           | 20.5           | 8.1  | 86.3 | 24.6 | 1.4  | 0.2  | 90.2 | 29.5 | 4.7  |
| Cu/Ni 1st Cl Conc 1-3     |          | 4.8  | 19.8      | 9.10 | 34.0 | 37.1  | 57.3 | 25.1 | 14.9 | 2.8  | 91.6           | 37.5           | 10.0 | 91.6 | 45.0 | 1.9  | 0.2  | 95.7 | 54.1 | 6.5  |
| Cu/Ni Ro Conc 1-3         |          | 17.7 | 5.62      | 4.85 | 33.7 | 55.8  | 16.3 | 12.6 | 62.0 | 9.1  | 95.7           | 73.4           | 36.3 | 95.7 | 83.2 | 29.1 | 2.9  |      |      |      |
| Po 1st CI Conc 1          |          | 1.2  | 0.94      | 2.23 | 34.4 | 62.4  | 2.72 | 5.04 | 82.6 | 9.7  | 1.1            | 2.2            | 2.4  | 1.1  | 2.2  | 2.5  | 0.2  | 34.1 | 18.5 | 6.6  |
| Po 1st CI Conc 1-2        |          | 1.5  | 0.98      | 2.56 | 34.4 | 62.1  | 2.85 | 5.97 | 81.6 | 9.6  | 1.4            | 3.3            | 3.2  | 1.4  | 3.4  | 3.3  | 0.3  | 46.3 | 28.4 | 8.4  |
| Po 1st CI Conc 1-3        |          | 1.8  | 0.95      | 2.70 | 34.4 | 61.9  | 2.75 | 6.35 | 81.4 | 9.5  | 1.7            | 4.2            | 3.8  | 1.7  | 4.3  | 3.9  | 0.3  | 53.6 | 36.2 | 10.1 |
| Po Ro Conc 1-3            |          | 17.8 | 0.18      | 1.06 | 32.3 | 66.4  | 0.52 | 1.78 | 82.0 | 15.7 | 3.1            | 16.1           | 35.0 | 3.1  | 11.8 | 38.8 | 4.9  |      |      |      |
| Cu/Ni Ro Conc 1-3&Po Ro C | Conc 1-3 | 35.5 | 2.89      | 2.95 | 33.0 | 61.1  | 8.38 | 7.18 | 72.0 | 12.4 | 98.8           | 89.5           | 71.3 | 98.8 | 95.0 | 67.9 | 7.8  |      |      |      |
| Po Ro Feed                |          | 82.3 | 0.05      | 0.38 | 12.7 | 86.8  | 0.16 | 0.55 | 32.4 | 66.8 | 4.3            | 26.6           | 63.7 | 4.3  | 16.8 | 70.9 | 97.1 |      |      |      |
| Purpose:                | Conduct op  | pen-circuit cl | eaning test  | with depress  | sants Na2SC  | 3 only |  |       |                   |       |            |         |               |
|-------------------------|-------------|----------------|--------------|---------------|--------------|--------|--|-------|-------------------|-------|------------|---------|---------------|
| Procedure:              | As outlined | l below.       |              |               |              |        |  |       |                   |       |            |         |               |
| Feed:                   | 2kg SN C    | omp -10 me     | sh           |               | Freezer\SI   | EC-11C |  |       |                   |       |            |         |               |
| Grind:                  | 34 minutes  | at 65% soli    | ds in 2 kg R | od Mill # 3   |              |        |  |       | P <sub>80</sub> = |       |            |         |               |
| Regrind                 | 12 minutes  | at 50% soli    | ds in 2 kg R | od Mill for C | u/Ni R.Conc  |        |  |       | P <sub>80</sub> = | 49 µm |            |         |               |
|                         | 24 minutes  | at 50% soli    | ds in 2 kg R | od Mill for P | o R.Conc     |        |  |       | P <sub>80</sub> = | 41 µm |            |         |               |
| Assays:                 | Cu, Ni, S   |                |              |               |              |        |  |       |                   |       |            |         |               |
| Conditions:             |             |                |              |               |              |        |  |       |                   |       |            |         |               |
|                         |             |                | Reagents     | added, gran   | ns per tonne |        |  | -     | Time, minute      | es    |            |         |               |
| Stage                   | Lime        | CuSO4          | Na2SO3       |               | PAX          | MIBC*  |  | Grind | Cond.             | Froth | pН         | ORP, mV |               |
|                         |             |                |              |               |              |        |  |       |                   |       |            |         |               |
| Grind                   | 625         |                |              |               | 5            |        |  | 34    |                   |       | 8.8        | 73      |               |
|                         |             |                |              |               |              |        |  |       |                   |       |            |         |               |
| Cu/Ni Rougher No. 1     | 5           |                |              |               |              | 0      |  |       | 1                 | 1     | 9.0        | -151    |               |
| Cu/Ni Rougher No. 2     | 35          |                |              |               | 5            | 0      |  |       | 1                 | 2     | 9.0        | 56      |               |
| Cu/Ni Rougher No. 3     | 65          |                |              |               | 5            | 0      |  |       | 1                 | 2     | 9.0        | 64      |               |
|                         |             |                |              |               |              |        |  |       |                   |       |            |         |               |
| Regrind (2kg Rod Mill)  | 150         |                | 500          |               | 1            |        |  | 12    |                   |       | 9.0        | 84      | Check Malvern |
| Cu/Ni 1st Cleaner No.1  | 35          |                |              |               |              | 0      |  |       | 1                 | 2     | 9.5        | 50      |               |
| Cu/Ni 1st Cleaner No.2  | 40          |                |              |               | 1            | 0      |  |       | 1                 | 2     | 9.5        | 84      |               |
| Cu/Ni 1st Cleaner No.3  | 40          |                |              |               | 1            | 0      |  |       | 1                 | 3     | 9.5        | 92      |               |
| Cu/Ni 1st Cleaner No.4  | 15          |                |              |               | 1            | 0      |  |       | 1                 | 2     | 9.6        | 82      |               |
| Po Poughor No. 1        |             |                |              |               | 5            | 0      |  |       | 1                 | 2     | notural pH |         |               |
| Po Rougher No. 1        | -           |                |              |               | 5            | 0      |  |       | 1                 | 5     | natural pH | 83      |               |
| Po Rougher No. 2        | -           |                |              |               | 5            | 0      |  |       |                   | 5     | natural pH | 93      |               |
|                         |             |                |              |               | 5            | 0      |  |       |                   | 5     |            | 104     |               |
| Po Cleaning on Po Ro Co | n 1-3       |                |              |               |              |        |  |       |                   |       |            |         |               |
| Regrind (2kg Rod Mill)  | 200         |                | 500          |               | 1            |        |  | 24    |                   |       | 8.8        | 64      | Check Malvern |
|                         |             |                |              |               |              |        |  |       |                   |       |            |         | -             |
| Po 1st Cleaner No.1     | 55          |                |              |               |              | 0      |  |       | 1                 | 2     | 9.0        | 64      |               |
| Po 1st Cleaner No.2     | 25          |                |              |               | 1            | 0      |  |       | 1                 | 2     | 9.0        | 91      |               |
| Po 1st Cleaner No.3     | 5           |                |              |               | 1            | 0      |  |       | 1                 | 2     | 9.0        | 103     |               |
|                         |             |                |              |               |              |        |  |       |                   |       |            |         |               |
|                         |             |                |              |               |              |        |  |       |                   |       |            |         |               |
| Total                   | 670         | 0              | 1000         | 0             | 32           | 0      |  |       |                   | 33    |            |         |               |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

Test: F6

Project: 18559-01

Date:

June 30, 2021

Operator: Deepak

| Broduct                   | We       | ight        |               |               |      | Assa  | ys, % |       |      |      |      |      | %    | % Distributi | on   |      |      | \<br>\ |          |      |
|---------------------------|----------|-------------|---------------|---------------|------|-------|-------|-------|------|------|------|------|------|--------------|------|------|------|--------|----------|------|
| Product                   | g        | %           | Cu            | Ni            | S    | Other | Ср    | Pn    | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |        |          |      |
| Cu/Ni 1st Cl Conc 1       | 135.4    | 6.7         | 9.91          | 6.18          | 35.0 | 48.9  | 28.7  | 16.5  | 50.7 | 4.13 | 64.8 | 36.2 | 14.2 | 64.8         | 42.3 | 8.9  | 0.5  | 1      |          |      |
| Cu/Ni 1st Cl Conc 2       | 97.2     | 4.8         | 4.95          | 5.36          | 35.3 | 54.4  | 14.3  | 14.0  | 66.7 | 5.01 | 23.2 | 22.5 | 10.3 | 23.2         | 25.7 | 8.4  | 0.4  |        |          |      |
| Cu/Ni 1st Cl Conc 3       | 98.5     | 4.9         | 1.21          | 3.06          | 35.9 | 59.8  | 3.51  | 7.33  | 83.8 | 5.39 | 5.8  | 13.0 | 10.6 | 5.8          | 13.7 | 10.7 | 0.5  |        |          |      |
| Cu/Ni 1st Cl Conc 4       | 40.3     | 2.0         | 0.31          | 1.73          | 36.4 | 61.6  | 0.90  | 3.54  | 90.7 | 4.87 | 0.6  | 3.0  | 4.4  | 0.6          | 2.7  | 4.8  | 0.2  |        |          |      |
| Cu/Ni 1st Cl Tails        | 217.1    | 10.7        | 0.14          | 0.88          | 31.9 | 67.1  | 0.41  | 1.30  | 81.4 | 16.9 | 1.5  | 8.3  | 20.7 | 1.5          | 5.4  | 23.0 | 3.2  |        |          |      |
| Po 1st CI Conc 1          | 53.4     | 2.6         | 0.37          | 1.61          | 33.3 | 64.7  | 1.07  | 3.31  | 82.7 | 12.9 | 1.0  | 3.7  | 5.3  | 1.0          | 3.4  | 5.7  | 0.6  |        |          |      |
| Po 1st Cl Conc 2          | 42.3     | 2.1         | 0.35          | 1.47          | 33.9 | 64.3  | 1.01  | 2.90  | 84.6 | 11.4 | 0.7  | 2.7  | 4.3  | 0.7          | 2.3  | 4.7  | 0.4  |        |          |      |
| Po 1st CI Conc 3          | 23.1     | 1.1         | 0.24          | <0.01         | 35.0 | 64.8  | 0.70  | -1.26 | 91.4 | 9.21 | 0.3  | 0.0  | 2.4  | 0.3          | -0.6 | 2.7  | 0.2  |        |          |      |
| Po 1st Cl Tails           | 184.7    | 9.1         | 0.13          | 0.64          | 28.3 | 70.9  | 0.38  | 0.75  | 72.5 | 26.4 | 1.2  | 5.1  | 15.6 | 1.2          | 2.6  | 17.4 | 4.2  |        |          |      |
| Po Ro Tails               | 1138.6   | 56.1        | 0.02          | 0.11          | 3.61 | 96.3  | 0.05  | 0.11  | 9.2  | 90.6 | 1.0  | 5.4  | 12.3 | 1.0          | 2.4  | 13.7 | 89.8 |        |          |      |
| Head (Calc.)              | 2030.6   | 100         | 1.02          | 1.14          | 16.5 | 81.4  | 2.95  | 2.60  | 37.9 | 56.6 | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1      |          |      |
| Head (Dir.)               |          |             | 1.07          | 1.17          | 16.5 | 81.3  | 3.10  | 2.69  | 37.7 | 56.5 |      |      |      |              |      |      |      |        |          |      |
|                           |          | 0.005 was u | ised for <0.0 | 01 calculatio | n    |       |       |       |      |      | -    |      |      |              |      |      |      | Stag   | je Recov | ery  |
| Combined Products         |          |             |               |               |      |       |       |       |      |      |      |      |      |              |      |      |      | Ср     | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1       |          | 6.7         | 9.91          | 6.18          | 35.0 | 48.9  | 28.7  | 16.5  | 50.7 | 4.13 | 64.8 | 36.2 | 14.2 | 64.8         | 42.3 | 8.9  | 0.5  | 67.6   | 47.1     | 16.0 |
| Cu/Ni 1st Cl Conc 1-2     |          | 11.5        | 7.84          | 5.84          | 35.1 | 51.2  | 22.7  | 15.4  | 57.4 | 4.50 | 88.1 | 58.7 | 24.4 | 88.1         | 68.0 | 17.3 | 0.9  | 91.8   | 75.8     | 31.1 |
| Cu/Ni 1st Cl Conc 1-3     |          | 16.3        | 5.87          | 5.01          | 35.4 | 53.8  | 17.0  | 13.0  | 65.2 | 4.76 | 93.8 | 71.8 | 35.0 | 93.8         | 81.7 | 28.1 | 1.4  | 97.8   | 91.0     | 50.3 |
| Cu/Ni 1st Cl Conc 1-4     |          | 18.3        | 5.26          | 4.66          | 35.5 | 54.6  | 15.3  | 12.0  | 68.0 | 4.77 | 94.4 | 74.8 | 39.4 | 94.4         | 84.5 | 32.8 | 1.5  | 98.5   | 94.0     | 58.8 |
| Cu/Ni Ro Conc 1-3         |          | 29.0        | 3.37          | 3.26          | 34.2 | 59.2  | 9.8   | 8.0   | 72.9 | 9.25 | 95.9 | 83.1 | 60.1 | 95.9         | 89.8 | 55.8 | 4.7  |        |          |      |
| Po 1st CI Conc 1          |          | 2.6         | 0.37          | 1.61          | 33.3 | 64.7  | 1.07  | 3.31  | 82.7 | 12.9 | 1.0  | 3.7  | 5.3  | 1.0          | 3.4  | 5.7  | 0.6  | 30.8   | 43.2     | 18.8 |
| Po 1st CI Conc 1-2        |          | 4.7         | 0.36          | 1.55          | 33.6 | 64.5  | 1.05  | 3.13  | 83.5 | 12.3 | 1.7  | 6.4  | 9.6  | 1.7          | 5.7  | 10.4 | 1.0  | 53.9   | 73.2     | 34.0 |
| Po 1st CI Conc 1-3        |          | 5.9         | 0.34          | 1.25          | 33.8 | 64.6  | 0.98  | 2.28  | 85.1 | 11.7 | 1.9  | 6.4  | 12.0 | 1.9          | 5.1  | 13.1 | 1.2  | 62.6   | 66.1     | 43.0 |
| Po Ro Conc 1-3            |          | 14.9        | 0.21          | 0.88          | 30.5 | 68.4  | 0.61  | 1.35  | 77.4 | 20.6 | 3.1  | 11.5 | 27.6 | 3.1          | 7.8  | 30.5 | 5.4  |        |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro ( | Conc 1-3 | 43.9        | 2.30          | 2.45          | 32.9 | 62.4  | 6.66  | 5.77  | 74.5 | 13.1 | 99.0 | 94.6 | 87.7 | 99.0         | 97.6 | 86.3 | 10.2 |        |          |      |
| Po Ro Feed                |          | 71.0        | 0.06          | 0.27          | 9.26 | 90.4  | 0.17  | 0.37  | 23.6 | 75.9 | 4.1  | 16.9 | 39.9 | 4.1          | 10.2 | 44.2 | 95.3 |        |          |      |

| Purpose:          | Similar to F5, with half Na2SO3 and DETA                                                                                                            |                           |                                                             |                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|----------------|
| Procedure:        | As outlined below.                                                                                                                                  |                           |                                                             |                |
| Feed:             | 2kg SN Comp -10 mesh                                                                                                                                | Freezer\SEC-11C           |                                                             |                |
| Grind:<br>Regrind | 34 minutes at 65% solids in 2 kg Rod Mill # 3<br>12 minutes at 50% solids in 2 kg Rod Mill for C<br>24 minutes at 50% solids in 2 kg Rod Mill for F | Cu/Ni R.Conc<br>ło R.Conc | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 32 μm<br>37 μm |

July 2, 2021

Operator: Deepak

## Conditions:

Test: F7

Project: 18559-01

|                          |       |       | Reagents | added, gran | ns per tonne |       | -     | Time, minute | es    |            |         |               |
|--------------------------|-------|-------|----------|-------------|--------------|-------|-------|--------------|-------|------------|---------|---------------|
| Stage                    | Lime  | CuSO4 | Na2SO3   | DETA        | PAX          | MIBC* | Grind | Cond.        | Froth | pН         | ORP, mV |               |
| Grind                    | 625   |       |          |             | 5            |       | 34    |              |       | 9.1        | 69      | -             |
| Cu/Ni Rougher No. 1      | 0     |       |          |             |              | 0     |       | 1            | 1     | 9.1        | 69      | -             |
| Cu/Ni Rougher No. 2      | 0     |       |          |             | 5            | 0     |       | 1            | 2     | 9.0        | 84      | 1             |
| Cu/Ni Rougher No. 3      | 5     |       |          |             | 5            | 0     |       | 1            | 2     | 9.0        | 85      |               |
| Regrind (2kg Rod Mill)   | 150   |       | 250      | 75          | 1            |       | 12    |              |       | 9.2        | 94      | Target pH 9.5 |
| Cu/Ni 1st Cleaner No.1   | 10    |       |          |             |              | 0     |       | 1            | 2     | 9.5        | 59      | 1 .           |
| Cu/Ni 1st Cleaner No.2   | 10    |       |          |             | 1            | 0     |       | 1            | 2     | 9.5        | 103     | 1             |
| Cu/Ni 1st Cleaner No.3   | 25    |       |          |             | 2            | 0     |       | 1            | 3     | 9.5        | 104     |               |
| Po Rougher No. 1         |       |       |          |             | 5            | 0     |       | 1            | 3     | natural pH | 95      | -             |
| Po Rougher No. 2         |       |       |          |             | 5            | 0     |       | 1            | 5     | natural pH | 103     | 1             |
| Po Rougher No. 3         |       |       |          |             | 5            | 0     |       | 1            | 5     | natural pH | 104     |               |
| Po Cleaning on Po Ro Cor | n 1-3 |       |          |             |              |       |       |              |       |            |         | -             |
| Regrind (2kg Rod Mill)   | 200   |       | 250      | 75          | 1            |       | 24    |              |       | 9.3        | 104     | Target pH 9.0 |
| Po 1st Cleaner No.1      | 0     |       |          |             |              | 0     |       | 1            | 2     | 9.3        | 104     | -             |
| Po 1st Cleaner No.2      | 5     |       |          |             | 1            | 0     |       | 1            | 2     | 9.0        | 105     | 1             |
| Po 1st Cleaner No.3      | 5     |       |          |             | 1            | 0     |       | 1            | 2     | 9.0        | 98      |               |
|                          |       |       |          |             |              |       |       |              |       |            |         |               |
| Total                    | 410   | 0     | 500      | 150         | 32           | 0     |       |              | 31    |            |         | ]             |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Dreduct                   | We       | ight |      |      |      | Assa  | ys,% |      |      |      |      |      | 0    | % Distributi | on   |      |      | `    |          |      |
|---------------------------|----------|------|------|------|------|-------|------|------|------|------|------|------|------|--------------|------|------|------|------|----------|------|
| Product                   | g        | %    | Cu   | Ni   | S    | Other | Ср   | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Ро   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1       | 67.4     | 3.3  | 23.9 | 6.98 | 34.3 | 34.8  | 69.3 | 19.3 | 9.61 | 1.86 | 78.3 | 20.7 | 7.0  | 78.3         | 25.1 | 0.9  | 0.1  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2       | 22.9     | 1.1  | 11.7 | 15.9 | 33.9 | 38.5  | 33.9 | 43.9 | 19.6 | 2.59 | 13.0 | 16.0 | 2.4  | 13.0         | 19.4 | 0.6  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 3       | 26.4     | 1.3  | 2.37 | 17.7 | 34.3 | 45.6  | 6.9  | 48.6 | 41.2 | 3.34 | 3.0  | 20.6 | 2.8  | 3.0          | 24.8 | 1.4  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Tails        | 290.2    | 14.3 | 0.17 | 1.51 | 34.6 | 63.7  | 0.49 | 2.98 | 86.9 | 9.66 | 2.4  | 19.3 | 30.5 | 2.4          | 16.7 | 33.3 | 2.4  |      |          |      |
| Po 1st CI Conc 1          | 32.9     | 1.6  | 0.51 | 2.10 | 35.8 | 61.6  | 1.48 | 4.61 | 87.7 | 6.22 | 0.8  | 3.0  | 3.6  | 0.8          | 2.9  | 3.8  | 0.2  |      |          |      |
| Po 1st CI Conc 2          | 6.4      | 0.3  | 0.95 | 4.54 | 34.3 | 60.2  | 2.75 | 11.5 | 76.7 | 9.01 | 0.3  | 1.3  | 0.7  | 0.3          | 1.4  | 0.6  | 0.0  |      |          |      |
| Po 1st Cl Conc 3          | 10.7     | 0.5  | 0.45 | 2.81 | 34.1 | 62.6  | 1.30 | 6.66 | 81.7 | 10.4 | 0.2  | 1.3  | 1.1  | 0.2          | 1.4  | 1.2  | 0.1  |      |          |      |
| Po 1st Cl Tails           | 336.7    | 16.6 | 0.06 | 0.65 | 32.2 | 67.1  | 0.18 | 0.64 | 82.9 | 16.3 | 1.0  | 9.6  | 32.9 | 1.0          | 4.2  | 36.9 | 4.7  |      |          |      |
| Po Ro Tails               | 1239.9   | 61.0 | 0.01 | 0.15 | 5.06 | 94.8  | 0.04 | 0.17 | 13.0 | 86.8 | 0.8  | 8.2  | 19.1 | 0.8          | 4.2  | 21.2 | 92.3 |      |          |      |
| Head (Calc.)              | 2033.5   | 100  | 1.01 | 1.12 | 16.2 | 81.7  | 2.93 | 2.55 | 37.2 | 57.3 | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)               |          |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10 | 2.69 | 37.7 | 56.5 |      |      |      |              |      |      |      |      |          |      |
|                           |          |      |      |      |      |       |      |      |      |      |      |      |      |              |      |      |      | Stag | je Recov | ery  |
| Combined Products         |          |      |      |      |      |       |      |      |      |      |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1       |          | 3.3  | 23.9 | 6.98 | 34.3 | 34.8  | 69.3 | 19.3 | 9.6  | 1.9  | 78.3 | 20.7 | 7.0  | 78.3         | 25.1 | 0.9  | 0.1  | 80.9 | 29.2     | 2.4  |
| Cu/Ni 1st Cl Conc 1-2     |          | 4.4  | 20.8 | 9.24 | 34.2 | 35.8  | 60.3 | 25.5 | 12.1 | 2.0  | 91.4 | 36.7 | 9.4  | 91.4         | 44.5 | 1.4  | 0.2  | 94.4 | 51.7     | 4.0  |
| Cu/Ni 1st Cl Conc 1-3     |          | 5.7  | 16.6 | 11.2 | 34.2 | 38.0  | 48.2 | 30.7 | 18.7 | 2.3  | 94.4 | 57.3 | 12.1 | 94.4         | 69.2 | 2.9  | 0.2  | 97.5 | 80.6     | 8.0  |
| Cu/Ni Ro Conc 1-3         |          | 20.0 | 4.89 | 4.28 | 34.5 | 56.3  | 14.2 | 10.9 | 67.3 | 7.6  | 96.8 | 76.5 | 42.6 | 96.8         | 85.9 | 36.2 | 2.6  |      |          |      |
| Po 1st CI Conc 1          |          | 1.6  | 0.51 | 2.10 | 35.8 | 61.6  | 1.48 | 4.61 | 87.7 | 6.2  | 0.8  | 3.0  | 3.6  | 0.8          | 2.9  | 3.8  | 0.2  | 34.6 | 29.6     | 9.0  |
| Po 1st CI Conc 1-2        |          | 1.9  | 0.58 | 2.50 | 35.6 | 61.4  | 1.69 | 5.74 | 85.9 | 6.7  | 1.1  | 4.3  | 4.2  | 1.1          | 4.4  | 4.5  | 0.2  | 47.1 | 44.0     | 10.5 |
| Po 1st CI Conc 1-3        |          | 2.5  | 0.55 | 2.56 | 35.2 | 61.6  | 1.60 | 5.94 | 85.0 | 7.5  | 1.3  | 5.6  | 5.4  | 1.3          | 5.7  | 5.6  | 0.3  | 57.0 | 57.9     | 13.2 |
| Po Ro Conc 1-3            |          | 19.0 | 0.13 | 0.90 | 32.6 | 66.4  | 0.36 | 1.33 | 83.2 | 15.1 | 2.4  | 15.3 | 38.3 | 2.4          | 9.9  | 42.5 | 5.0  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro C | Conc 1-3 | 39.0 | 2.57 | 2.63 | 33.6 | 61.2  | 7.45 | 6.25 | 75.1 | 11.2 | 99.2 | 91.8 | 80.9 | 99.2         | 95.8 | 78.8 | 7.7  |      |          |      |
| Po Ro Feed                |          | 80.0 | 0.04 | 0.33 | 11.6 | 88.0  | 0.12 | 0.45 | 29.7 | 69.8 | 3.2  | 23.5 | 57.4 | 3.2          | 14.1 | 63.8 | 97.4 |      |          |      |

| Purpose:          | Similar to F5, with 100/50 Na2SO3 and DETA                                                                                                          |                           |                                                             |                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|----------------|
| Procedure:        | As outlined below.                                                                                                                                  |                           |                                                             |                |
| Feed:             | 2kg SN Comp -10 mesh                                                                                                                                | Freezer\SEC-11C           |                                                             |                |
| Grind:<br>Regrind | 34 minutes at 65% solids in 2 kg Rod Mill # 3<br>12 minutes at 50% solids in 2 kg Rod Mill for 0<br>24 minutes at 50% solids in 2 kg Rod Mill for P | Cu/Ni R.Conc<br>?o R.Conc | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 35 μm<br>26 μm |

July 5, 2021

Operator: Deepak

## Conditions:

Test: F8

Project: 18559-01

|                          |      |       | Reagents | added, gran | ns per tonne |       | 1     | Γime, minute | es    |            |         |               |
|--------------------------|------|-------|----------|-------------|--------------|-------|-------|--------------|-------|------------|---------|---------------|
| Stage                    | Lime | CuSO4 | Na2SO3   | DETA        | PAX          | MIBC* | Grind | Cond.        | Froth | рН         | ORP, mV |               |
| Cried.                   | 005  |       |          |             |              |       | 24    |              |       | 0.1        |         | -             |
| Grind                    | 625  |       |          |             | 5            |       | 34    |              |       | 9.1        | 25      | -             |
| Cu/Ni Rougher No. 1      | 0    |       |          |             |              | 0     |       | 1            | 1     | 9.1        | 25      | 1             |
| Cu/Ni Rougher No. 2      | 5    |       |          |             | 5            | 0     |       | 1            | 2     | 9.0        | 145     | 1             |
| Cu/Ni Rougher No. 3      | 10   |       |          |             | 5            | 0     |       | 1            | 2     | 9.0        | 156     | ]             |
| Rearind (2kg Rod Mill)   | 175  |       | 100      | 50          | 1            |       | 12    |              |       | 9.0        | 157     | Target nH 9 5 |
| Cu/Ni 1st Cleaner No.1   | 50   |       |          |             |              | 0     |       | 1            | 2     | 9.5        | 96      |               |
| Cu/Ni 1st Cleaner No.2   | 5    |       |          |             | 1            | 0     |       | 1            | 2     | 9.5        | 107     | 1             |
| Cu/Ni 1st Cleaner No.3   | 30   |       |          |             | 2            | 0     |       | 1            | 3     | 9.5        | 131     | 1             |
| Po Rougher No. 1         |      |       |          |             | 5            | 0     |       | 1            | 3     | natural pH | 169     | -             |
| Po Rougher No. 2         |      |       |          |             | 5            | 2.5   |       | 1            | 5     | natural pH | 194     | 1             |
| Po Rougher No. 3         |      |       |          |             | 5            | 2.5   |       | 1            | 5     | natural pH | 190     | 4             |
| Po Cleaning on Po Ro Con | 1-3  |       |          |             |              |       |       |              |       |            |         | -             |
| Regrind (2kg Rod Mill)   | 200  |       | 100      | 50          | 1            |       | 24    |              |       | 9.0        | 177     | Target pH 9.0 |
| Po 1st Cleaner No.1      | 0    |       |          |             |              | 0     |       | 1            | 2     | 9.0        | 177     | -             |
| Po 1st Cleaner No.2      | 25   |       |          |             | 1            | 0     |       | 1            | 2     | 9.0        | 168     | 1             |
| Po 1st Cleaner No.3      | 40   |       |          |             | 1            | 0     |       | 1            | 2     | 9.0        | 165     |               |
|                          |      |       |          |             |              |       |       |              |       |            |         | 4             |
| Total                    | 540  | 0     | 200      | 100         | 32           | 5     |       |              | 31    |            |         |               |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Dreduct                   | We       | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | 0    | % Distributi | on   |      |      | · [  |          |      |
|---------------------------|----------|------|------|------|------|-------|-------|------|------|------|------|------|------|--------------|------|------|------|------|----------|------|
| Product                   | g        | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1       | 93.5     | 4.6  | 18.8 | 10.3 | 33.6 | 37.3  | 54.5  | 28.4 | 13.4 | 3.71 | 85.3 | 40.8 | 9.2  | 85.3         | 49.4 | 1.6  | 0.3  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2       | 21.3     | 1.1  | 8.10 | 13.7 | 34.6 | 43.6  | 23.5  | 37.5 | 36.3 | 2.63 | 8.4  | 12.4 | 2.2  | 8.4          | 14.9 | 1.0  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 3       | 42.0     | 2.1  | 0.77 | 5.75 | 37.1 | 56.4  | 2.23  | 14.8 | 81.6 | 1.31 | 1.6  | 10.2 | 4.6  | 1.6          | 11.6 | 4.4  | 0.0  |      |          |      |
| Cu/Ni 1st Cl Tails        | 288.9    | 14.3 | 0.09 | 1.12 | 34.9 | 63.9  | 0.26  | 1.87 | 88.8 | 9.06 | 1.2  | 13.7 | 29.5 | 1.2          | 10.1 | 32.6 | 2.3  |      |          |      |
| Po 1st CI Conc 1          | 30.6     | 1.5  | 0.65 | 2.56 | 36.1 | 60.7  | 1.88  | 5.90 | 87.0 | 5.22 | 1.0  | 3.3  | 3.2  | 1.0          | 3.4  | 3.4  | 0.1  |      |          |      |
| Po 1st CI Conc 2          | 10.6     | 0.5  | 0.65 | 3.45 | 35.4 | 60.5  | 1.88  | 8.43 | 83.0 | 6.68 | 0.3  | 1.6  | 1.1  | 0.3          | 1.7  | 1.1  | 0.1  |      |          |      |
| Po 1st CI Conc 3          | 13.7     | 0.7  | 0.32 | 2.09 | 35.1 | 62.5  | 0.93  | 4.60 | 86.4 | 8.09 | 0.2  | 1.2  | 1.4  | 0.2          | 1.2  | 1.5  | 0.1  |      |          |      |
| Po 1st Cl Tails           | 287.5    | 14.2 | 0.08 | 0.69 | 33.0 | 66.2  | 0.23  | 0.73 | 84.9 | 14.2 | 1.1  | 8.4  | 27.7 | 1.1          | 3.9  | 31.0 | 3.6  |      |          |      |
| Po Ro Tails               | 1233.7   | 61.0 | 0.02 | 0.16 | 5.86 | 94.0  | 0.04  | 0.17 | 15.0 | 84.8 | 0.9  | 8.4  | 21.1 | 0.9          | 4.0  | 23.5 | 93.3 |      |          |      |
| Head (Calc.)              | 2021.8   | 100  | 1.02 | 1.17 | 16.9 | 80.9  | 2.96  | 2.66 | 39.0 | 55.4 | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)               |          |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |              |      |      |      |      |          |      |
|                           |          |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      | Sta  | ge Recov | ery  |
| Combined Products         |          |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1       |          | 4.6  | 18.8 | 10.3 | 33.6 | 37.3  | 54.5  | 28.4 | 13.4 | 3.7  | 85.3 | 40.8 | 9.2  | 85.3         | 49.4 | 1.6  | 0.3  | 88.4 | 57.5     | 4.0  |
| Cu/Ni 1st Cl Conc 1-2     |          | 5.7  | 16.8 | 10.9 | 33.8 | 38.5  | 48.7  | 30.1 | 17.6 | 3.5  | 93.6 | 53.2 | 11.3 | 93.6         | 64.3 | 2.6  | 0.4  | 97.1 | 74.8     | 6.5  |
| Cu/Ni 1st Cl Conc 1-3     |          | 7.8  | 12.5 | 9.54 | 34.7 | 43.3  | 36.3  | 26.0 | 34.8 | 2.9  | 95.2 | 63.4 | 15.9 | 95.2         | 75.9 | 6.9  | 0.4  | 98.7 | 88.3     | 17.5 |
| Cu/Ni Ro Conc 1-3         |          | 22.0 | 4.46 | 4.08 | 34.8 | 56.6  | 12.9  | 10.4 | 69.8 | 6.9  | 96.5 | 77.1 | 45.4 | 96.5         | 85.9 | 39.5 | 2.7  |      |          |      |
| Po 1st CI Conc 1          |          | 1.5  | 0.65 | 2.56 | 36.1 | 60.7  | 1.88  | 5.90 | 87.0 | 5.2  | 1.0  | 3.3  | 3.2  | 1.0          | 3.4  | 3.4  | 0.1  | 36.5 | 33.3     | 9.1  |
| Po 1st CI Conc 1-2        |          | 2.0  | 0.65 | 2.79 | 35.9 | 60.6  | 1.88  | 6.55 | 86.0 | 5.6  | 1.3  | 4.9  | 4.3  | 1.3          | 5.0  | 4.5  | 0.2  | 49.2 | 49.8     | 12.2 |
| Po 1st CI Conc 1-3        |          | 2.7  | 0.57 | 2.61 | 35.7 | 61.1  | 1.65  | 6.06 | 86.1 | 6.2  | 1.5  | 6.1  | 5.7  | 1.5          | 6.2  | 6.0  | 0.3  | 57.2 | 61.4     | 16.2 |
| Po Ro Conc 1-3            |          | 16.9 | 0.16 | 1.00 | 33.4 | 65.4  | 0.46  | 1.58 | 85.1 | 12.9 | 2.6  | 14.5 | 33.5 | 2.6          | 10.1 | 37.0 | 3.9  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro 0 | Conc 1-3 | 39.0 | 2.59 | 2.74 | 34.2 | 60.4  | 7.51  | 6.55 | 76.4 | 9.5  | 99.1 | 91.6 | 78.9 | 99.1         | 96.0 | 76.5 | 6.7  |      |          |      |
| Po Ro Feed                |          | 78.0 | 0.05 | 0.34 | 11.9 | 87.8  | 0.13  | 0.48 | 30.2 | 69.1 | 3.5  | 22.9 | 54.6 | 3.5          | 14.1 | 60.5 | 97.3 |      |          |      |

| Purpose:          | Similar to F5, with 100/25 Na2SO3 and DETA                                                                                                          |                           |                                                             |                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|--------------------------|
| Procedure:        | As outlined below.                                                                                                                                  |                           |                                                             |                          |
| Feed:             | 2kg SN Comp -10 mesh                                                                                                                                | Freezer\SEC-11C           |                                                             |                          |
| Grind:<br>Regrind | 34 minutes at 65% solids in 2 kg Rod Mill # 3<br>12 minutes at 50% solids in 2 kg Rod Mill for C<br>48 minutes at 50% solids in 2 kg Rod Mill for F | cu/Ni R.Conc<br>lo R.Conc | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 100 μm<br>31 μm<br>18 μm |

July 5, 2021

Operator: Deepak

Conditions:

Test: F9

Project: 18559-01

|                          |       |       | Reagents | added, grar | ns per tonne |       | -     | Fime, minute | es    |            |         |               |  |  |  |  |
|--------------------------|-------|-------|----------|-------------|--------------|-------|-------|--------------|-------|------------|---------|---------------|--|--|--|--|
| Stage                    | Lime  | CuSO4 | Na2SO3   | DETA        | PAX          | MIBC* | Grind | Cond.        | Froth | pН         | ORP, mV | -             |  |  |  |  |
| Grind                    | 625   |       |          |             | 5            |       | 34    |              |       | 9.1        | 55      | -             |  |  |  |  |
| Cu/Ni Pougher No. 1      | 0     |       |          |             |              | 2.5   |       | 1            | 1     | 0.1        |         | -             |  |  |  |  |
| Cu/Ni Rougher No. 1      | 0     |       |          |             | 5            | 2.5   |       | 1            | 2     | 9.1        | 55      | 1             |  |  |  |  |
| Cu/Ni Rougher No. 3      | 15    |       |          |             | 5            | 2.5   |       | 1            | 2     | 9.0        | 140     | -             |  |  |  |  |
| Regrind (2kg Rod Mill)   | 175   |       | 100      | 25          | 1            |       | 12    |              |       | 9.1        | 160     | Target pH 9.5 |  |  |  |  |
| Cu/Ni 1st Cleaner No.1   | 15    |       |          |             |              | 0     |       | 1            | 2     | 9.5        | 136     | ]             |  |  |  |  |
| Cu/Ni 1st Cleaner No.2   | 25    |       |          |             | 1            | 0     |       | 1            | 2     | 9.5        | 142     | 1             |  |  |  |  |
| Cu/Ni 1st Cleaner No.3   | 35    |       |          |             | 2            | 0     |       | 1            | 3     | 9.5        | 141     | 1             |  |  |  |  |
| Cu/Ni 1st Cleaner No.4   | 45    |       |          |             | 2            | 0     |       | 1            | 3     | 9.5        | 143     | -             |  |  |  |  |
| Po Rougher No. 1         |       |       |          |             | 5            | 0     |       | 1            | 3     | natural pH | 170     | -             |  |  |  |  |
| Po Rougher No. 2         |       |       |          |             | 5            | 7.5   |       | 1            | 5     | natural pH | 179     | 1             |  |  |  |  |
| Po Rougher No. 3         |       |       |          |             | 5            | 0     |       | 1            | 5     | natural pH | 186     | -             |  |  |  |  |
| Po Cleaning on Po Ro Cor | n 1-3 |       |          |             |              |       |       |              |       |            |         | -             |  |  |  |  |
| Regrind (2kg Rod Mill)   | 200   |       | 100      | 25          | 1            |       | 48    |              |       | 8.9        | 190     | Target pH 9.0 |  |  |  |  |
| Po 1st Cleaner No.1      | 5     |       |          |             |              | 0     |       | 1            | 2     | 9.0        | 91      | -             |  |  |  |  |
| Po 1st Cleaner No.2      | 45    |       |          |             | 1            | 0     |       | 1            | 2     | 9.0        | 153     | 1             |  |  |  |  |
| Po 1st Cleaner No.3      | 5     |       |          |             | 1            | 0     |       | 1            | 2     | 9.0        | 98      | -             |  |  |  |  |
|                          |       |       |          |             |              |       |       |              |       |            |         | -             |  |  |  |  |
| Total                    | 565   | 0     | 200      | 50          | 34           | 12.5  |       |              | 34    |            |         |               |  |  |  |  |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Broduct                              | Weight Assays, % % Distribution |      |       |      |      |       |      | •    |      |      |      |      |          |      |      |      |      |      |      |      |
|--------------------------------------|---------------------------------|------|-------|------|------|-------|------|------|------|------|------|------|----------|------|------|------|------|------|------|------|
| FIOUUCI                              | g                               | %    | Cu    | Ni   | S    | Other | Ср   | Pn   | Ро   | Ga   | Cu   | Ni   | S        | Ср   | Pn   | Ро   | Ga   |      |      |      |
| Cu/Ni 1st Cl Conc 1                  | 82.9                            | 4.1  | 19.2  | 9.66 | 33.8 | 37.3  | 55.7 | 26.6 | 14.4 | 3.34 | 77.2 | 33.4 | 8.4      | 77.2 | 40.0 | 1.6  | 0.2  | 1    |      |      |
| Cu/Ni 1st Cl Conc 2                  | 23.3                            | 1.1  | 11.6  | 13.3 | 33.9 | 41.2  | 33.6 | 36.6 | 26.1 | 3.67 | 13.1 | 12.9 | 2.4      | 13.1 | 15.5 | 0.8  | 0.1  |      |      |      |
| Cu/Ni 1st Cl Conc 3                  | 19.6                            | 1.0  | 2.81  | 11.4 | 35.6 | 50.2  | 8.14 | 30.9 | 58.6 | 2.38 | 2.7  | 9.3  | 2.1      | 2.7  | 11.0 | 1.5  | 0.0  |      |      |      |
| Cu/Ni 1st Cl Conc 4                  | 22.2                            | 1.1  | 1.10  | 5.71 | 36.9 | 56.3  | 3.19 | 14.7 | 80.3 | 1.76 | 1.2  | 5.3  | 2.5      | 1.2  | 5.9  | 2.3  | 0.0  |      |      |      |
| Cu/Ni 1st Cl Tails                   | 218.6                           | 10.8 | 0.23  | 1.41 | 34.2 | 64.2  | 0.67 | 2.72 | 85.9 | 10.7 | 2.4  | 12.9 | 22.4     | 2.4  | 10.8 | 24.6 | 2.0  |      |      |      |
| Po 1st CI Conc 1                     | 50.7                            | 2.5  | 0.34  | 1.90 | 35.2 | 62.6  | 0.99 | 4.06 | 87.1 | 7.90 | 0.8  | 4.0  | 5.4      | 0.8  | 3.7  | 5.8  | 0.3  |      |      |      |
| Po 1st CI Conc 2                     | 28.6                            | 1.4  | 0.40  | 2.10 | 35.0 | 62.5  | 1.16 | 4.63 | 85.9 | 8.32 | 0.6  | 2.5  | 3.0      | 0.6  | 2.4  | 3.2  | 0.2  |      |      |      |
| Po 1st CI Conc 3                     | 26.9                            | 1.3  | 0.28  | 1.66 | 34.8 | 63.3  | 0.81 | 3.40 | 86.7 | 9.05 | 0.4  | 1.9  | 2.8      | 0.4  | 1.7  | 3.1  | 0.2  |      |      |      |
| Po 1st CI Tails                      | 269.9                           | 13.3 | 0.10  | 0.72 | 31.5 | 67.7  | 0.29 | 0.86 | 80.8 | 18.0 | 1.3  | 8.1  | 25.5     | 1.3  | 4.2  | 28.6 | 4.2  |      |      |      |
| Po Ro Tails                          | 1289.7                          | 63.5 | <0.01 | 0.18 | 6.59 | 93.2  | 0.01 | 0.21 | 16.9 | 82.9 | 0.3  | 9.7  | 25.5     | 0.3  | 4.8  | 28.6 | 92.6 |      |      |      |
| Head (Calc.)                         | 2032.4                          | 100  | 1.01  | 1.18 | 16.4 | 81.4  | 2.94 | 2.71 | 37.6 | 56.8 | 100  | 100  | 100      | 100  | 100  | 100  | 100  | ]    |      |      |
| Head (Dir.)                          |                                 |      | 1.07  | 1.17 | 16.5 | 81.3  | 3.10 | 2.69 | 37.7 | 56.5 |      |      |          |      |      |      |      |      |      |      |
| 0.005 was used for <0.01 calculation |                                 |      |       |      |      |       |      |      |      |      |      | Stag | je Recov | ery  |      |      |      |      |      |      |
| Combined Products                    |                                 |      |       |      |      |       |      |      |      |      |      |      |          |      |      |      |      | Ср   | Pn   | Po   |
| Cu/Ni 1st Cl Conc 1                  | 82.9                            | 4.1  | 19.2  | 9.66 | 33.8 | 37.3  | 55.7 | 26.6 | 14.4 | 3.34 | 77.2 | 33.4 | 8.4      | 77.2 | 40.0 | 1.6  | 0.2  | 79.9 | 48.1 | 5.1  |
| Cu/Ni 1st Cl Conc 1-2                | 106.2                           | 5.2  | 17.5  | 10.5 | 33.8 | 38.2  | 50.8 | 28.8 | 17.0 | 3.41 | 90.3 | 46.3 | 10.8     | 90.3 | 55.5 | 2.4  | 0.3  | 93.5 | 66.7 | 7.7  |
| Cu/Ni 1st Cl Conc 1-3                | 125.8                           | 6.2  | 15.2  | 10.6 | 34.1 | 40.1  | 44.2 | 29.1 | 23.4 | 3.25 | 93.0 | 55.7 | 12.9     | 93.0 | 66.5 | 3.9  | 0.4  | 96.2 | 79.9 | 12.5 |
| Cu/Ni 1st Cl Conc 1-4                | 148.0                           | 7.3  | 13.1  | 9.87 | 34.5 | 42.5  | 38.0 | 27.0 | 32.0 | 3.03 | 94.2 | 61.0 | 15.3     | 94.2 | 72.4 | 6.2  | 0.4  | 97.5 | 87.1 | 20.1 |
| Cu/Ni Ro Conc 1-3                    | 366.6                           | 18.0 | 5.43  | 4.83 | 34.3 | 55.4  | 15.7 | 12.5 | 64.1 | 7.62 | 96.6 | 73.8 | 37.8     | 96.6 | 83.2 | 30.8 | 2.4  |      |      |      |
| Po 1st CI Conc 1                     | 50.7                            | 2.5  | 0.34  | 1.90 | 35.2 | 62.6  | 0.99 | 4.06 | 87.1 | 7.9  | 0.8  | 4.0  | 5.4      | 0.8  | 3.7  | 5.8  | 0.3  | 27.3 | 31.1 | 14.2 |
| Po 1st CI Conc 1-2                   | 79.3                            | 3.9  | 0.36  | 1.97 | 35.1 | 62.5  | 1.05 | 4.27 | 86.6 | 8.1  | 1.4  | 6.5  | 8.4      | 1.4  | 6.1  | 9.0  | 0.6  | 45.4 | 51.0 | 22.1 |
| Po 1st CI Conc 1-3                   | 106.2                           | 5.2  | 0.34  | 1.89 | 35.0 | 62.7  | 0.99 | 4.05 | 86.7 | 8.3  | 1.8  | 8.4  | 11.2     | 1.8  | 7.8  | 12.1 | 0.8  | 57.3 | 64.8 | 29.7 |
| Po Ro Conc 1-3                       | 376.1                           | 18.5 | 0.17  | 1.05 | 32.5 | 66.3  | 0.49 | 1.76 | 82.5 | 15.3 | 3.1  | 16.5 | 36.7     | 3.1  | 12.0 | 40.6 | 5.0  |      |      |      |
| Cu/Ni Ro Conc 1-3&Po Ro C            | 742.7                           | 36.5 | 2.77  | 2.91 | 33.4 | 60.9  | 8.02 | 7.07 | 73.4 | 11.5 | 99.7 | 90.3 | 74.5     | 99.7 | 95.2 | 71.4 | 7.4  |      |      |      |
| Po Ro Feed                           | 1665.8                          | 82.0 | 0.04  | 0.38 | 12.4 | 87.1  | 0.12 | 0.56 | 31.7 | 67.6 | 3.4  | 26.2 | 62.2     | 3.4  | 16.8 | 69.2 | 97.6 |      |      |      |

| Test: F10  | Project: 18559-01                      | Date: July 6, 2021    | Operator: Deepak        |
|------------|----------------------------------------|-----------------------|-------------------------|
| Purpose:   | Similar to F9, with 100/10 Na2SO3 and  | IDETA                 |                         |
| Procedure: | As outlined below.                     |                       |                         |
| Feed:      | 2kg SN Comp -10 mesh                   | Freezer\SEC-11C       |                         |
| Grind:     | 34 minutes at 65% solids in 2 kg Rod N | Ліll # 3              | P <sub>80</sub> =       |
| Regrind    | 12 minutes at 50% solids in 2 kg Rod M | /ill for Cu/Ni R.Conc | P <sub>80</sub> = 31 μm |

5 minutes at 50% solids in Attrition Mill for Po R.Conc - stainless steel

Stage

|                          | Reagents added, grams per tonne |             |                 |         |     |       |   | 1     | Time, minute | es    |            |         | ]                    |
|--------------------------|---------------------------------|-------------|-----------------|---------|-----|-------|---|-------|--------------|-------|------------|---------|----------------------|
| Stage                    | Lime                            | CuSO4       | Na2SO3          | DETA    | PAX | MIBC* |   | Grind | Cond.        | Froth | pН         | ORP, mV | -                    |
| Crind                    | 625                             |             |                 |         | 5   |       |   | 24    |              |       | 0.0        | 400     |                      |
| Gina                     | 025                             |             |                 |         | 5   |       |   | - 34  |              |       | 9.0        | 122     | -                    |
| Cu/Ni Rougher No. 1      | 0                               |             |                 |         |     | 0     |   |       | 1            | 1     | 9.0        | 122     | -                    |
| Cu/Ni Rougher No. 2      | 10                              |             |                 |         | 5   | 0     |   |       | 1            | 2     | 9.0        | 146     | 1                    |
| Cu/Ni Rougher No. 3      | 15                              |             |                 |         | 5   | 0     |   |       | 1            | 2     | 9.0        | 151     |                      |
| Regrind (2kg Rod Mill)   | 175                             |             | 100             | 10      | 1   |       |   | 12    |              |       | 9.1        | 153     | Target pH 9.5        |
| Cu/Ni 1st Cleaner No.1   | 25                              |             |                 |         |     | 0     |   |       | 1            | 2     | 9.5        | 136     | Target P80 ~35 um    |
| Cu/Ni 1st Cleaner No.2   | 15                              |             |                 |         | 1   | 0     |   |       | 1            | 2     | 9.5        | 149     | 1                    |
| Cu/Ni 1st Cleaner No.3   | 30                              |             |                 |         | 2   | 0     |   |       | 1            | 3     | 9.5        | 145     | 1                    |
| Cu/Ni 1st Cleaner No.4   | 30                              |             |                 |         | 2   | 0     |   |       | 1            | 3     | 9.5        | 148     |                      |
| Po Rougher No. 1         |                                 |             |                 |         | 5   | 2.5   |   |       | 1            | 3     | natural pH | 160     | -                    |
| Po Rougher No. 2         |                                 |             |                 |         | 5   | 5     |   |       | 1            | 5     | natural pH | 192     | 1                    |
| Po Rougher No. 3         |                                 |             |                 |         | 5   | 5     |   |       | 1            | 5     | natural pH | 204     |                      |
| Po Cleaning on Po Ro Con | 1-3. Split to                   | two, each p | ut in Attrition | n Mill. |     |       |   |       |              |       |            |         | -                    |
| Regrind (Attrition Mill) | 175                             |             | 100             | 10      | 1   |       |   | 5     |              |       | 8.8        | 157     | Target pH 9.0        |
|                          |                                 |             |                 |         |     |       |   |       |              |       |            |         | Target P80 ~15-20 um |
| Po 1st Cleaner No.1      | 55                              |             |                 |         |     | 0     |   |       | 1            | 2     | 9.0        | 157     |                      |
| Po 1st Cleaner No.2      | 55                              |             |                 |         | 1   | 0     |   |       | 1            | 2     | 9.0        | 180     |                      |
| Po 1st Cleaner No.3      | 35                              |             |                 |         | 1   | 0     |   |       | 1            | 2     | 9.0        | 180     | -                    |
|                          |                                 |             |                 |         |     |       |   |       |              |       |            |         | 1                    |
| Total                    | 620                             | 0           | 200             | 20      | 34  | 12.5  | • |       |              | 34    |            |         | ]                    |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

P<sub>80</sub> =

28 µm

| Broduct                              | Product Weight Assays, % % Distribution |      |      |      |      |       |      | 1 `  |      |      |      |      |      |          |      |      |      |      |      |      |
|--------------------------------------|-----------------------------------------|------|------|------|------|-------|------|------|------|------|------|------|------|----------|------|------|------|------|------|------|
| FIOUUCI                              | g                                       | %    | Cu   | Ni   | S    | Other | Ср   | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср       | Pn   | Po   | Ga   |      |      |      |
| Cu/Ni 1st Cl Conc 1                  | 115.9                                   | 5.8  | 13.8 | 8.07 | 34.7 | 43.4  | 40.0 | 21.9 | 35.0 | 3.10 | 79.0 | 40.5 | 12.4 | 79.0     | 48.0 | 5.5  | 0.3  | 1    |      |      |
| Cu/Ni 1st Cl Conc 2                  | 36.8                                    | 1.8  | 6.51 | 8.56 | 34.8 | 50.1  | 18.9 | 23.0 | 53.5 | 4.60 | 11.8 | 13.7 | 4.0  | 11.8     | 16.0 | 2.7  | 0.1  |      |      |      |
| Cu/Ni 1st Cl Conc 3                  | 42.4                                    | 2.1  | 1.47 | 4.83 | 35.6 | 58.1  | 4.26 | 12.3 | 78.0 | 5.38 | 3.1  | 8.9  | 4.7  | 3.1      | 9.9  | 4.5  | 0.2  |      |      |      |
| Cu/Ni 1st Cl Conc 4                  | 34.5                                    | 1.7  | 0.55 | 2.50 | 36.5 | 60.5  | 1.59 | 5.71 | 88.5 | 4.23 | 0.9  | 3.7  | 3.9  | 0.9      | 3.7  | 4.1  | 0.1  |      |      |      |
| Cu/Ni 1st Cl Tails                   | 140.5                                   | 7.0  | 0.26 | 1.23 | 31.9 | 66.6  | 0.75 | 2.29 | 80.2 | 16.7 | 1.8  | 7.5  | 13.8 | 1.8      | 6.1  | 15.2 | 2.0  |      |      |      |
| Po 1st CI Conc 1                     | 40.4                                    | 2.0  | 0.35 | 1.95 | 33.8 | 63.9  | 1.01 | 4.25 | 83.2 | 11.5 | 0.7  | 3.4  | 4.2  | 0.7      | 3.2  | 4.5  | 0.4  |      |      |      |
| Po 1st CI Conc 2                     | 30.8                                    | 1.5  | 0.34 | 1.83 | 33.7 | 64.1  | 0.99 | 3.92 | 83.3 | 11.8 | 0.5  | 2.4  | 3.2  | 0.5      | 2.3  | 3.5  | 0.3  |      |      |      |
| Po 1st CI Conc 3                     | 30.3                                    | 1.5  | 0.31 | 1.77 | 34.2 | 63.7  | 0.90 | 3.73 | 84.8 | 10.6 | 0.5  | 2.3  | 3.2  | 0.5      | 2.1  | 3.5  | 0.3  |      |      |      |
| Po 1st Cl Tails                      | 276.2                                   | 13.7 | 0.07 | 0.73 | 31.2 | 68.0  | 0.19 | 0.90 | 80.1 | 18.8 | 0.9  | 8.7  | 26.6 | 0.9      | 4.7  | 29.8 | 4.5  |      |      |      |
| Po Ro Tails                          | 1263.4                                  | 62.8 | 0.01 | 0.16 | 6.16 | 93.7  | 0.04 | 0.16 | 15.8 | 84.0 | 0.8  | 8.8  | 24.0 | 0.8      | 3.9  | 26.9 | 91.7 |      |      |      |
| Head (Calc.)                         | 2011.2                                  | 100  | 1.01 | 1.15 | 16.1 | 81.7  | 2.92 | 2.63 | 36.9 | 57.5 | 100  | 100  | 100  | 100      | 100  | 100  | 100  | 1    |      |      |
| Head (Dir.)                          |                                         |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10 | 2.69 | 37.7 | 56.5 |      |      |      |          |      |      |      |      |      |      |
| 0.005 was used for <0.01 calculation |                                         |      |      |      |      |       |      |      |      |      |      |      | Stag | je Recov | ery  |      |      |      |      |      |
| Combined Products                    |                                         |      |      |      |      |       |      |      |      |      |      |      |      |          |      |      |      | Ср   | Pn   | Po   |
| Cu/Ni 1st Cl Conc 1                  |                                         | 5.8  | 13.8 | 8.07 | 34.7 | 43.4  | 40.0 | 21.9 | 35.0 | 3.10 | 79.0 | 40.5 | 12.4 | 79.0     | 48.0 | 5.5  | 0.3  | 81.7 | 57.4 | 17.1 |
| Cu/Ni 1st Cl Conc 1-2                |                                         | 7.6  | 12.0 | 8.19 | 34.7 | 45.0  | 34.9 | 22.2 | 39.4 | 3.46 | 90.8 | 54.2 | 16.4 | 90.8     | 64.0 | 8.1  | 0.5  | 94.0 | 76.5 | 25.5 |
| Cu/Ni 1st Cl Conc 1-3                |                                         | 9.7  | 9.75 | 7.46 | 34.9 | 47.9  | 28.2 | 20.1 | 47.8 | 3.88 | 93.9 | 63.1 | 21.0 | 93.9     | 73.9 | 12.6 | 0.7  | 97.2 | 88.3 | 39.4 |
| Cu/Ni 1st Cl Conc 1-4                |                                         | 11.4 | 8.36 | 6.71 | 35.2 | 49.8  | 24.2 | 17.9 | 53.9 | 3.93 | 94.8 | 66.8 | 24.9 | 94.8     | 77.6 | 16.7 | 0.8  | 98.1 | 92.7 | 52.4 |
| Cu/Ni Ro Conc 1-3                    |                                         | 18.4 | 5.29 | 4.63 | 33.9 | 56.2  | 15.3 | 12.0 | 63.9 | 8.80 | 96.6 | 74.3 | 38.8 | 96.6     | 83.7 | 31.8 | 2.8  |      |      |      |
| Po 1st CI Conc 1                     |                                         | 2.0  | 0.35 | 1.95 | 33.8 | 63.9  | 1.01 | 4.25 | 83.2 | 11.5 | 0.7  | 3.4  | 4.2  | 0.7      | 3.2  | 4.5  | 0.4  | 27.1 | 26.2 | 11.0 |
| Po 1st CI Conc 1-2                   |                                         | 3.5  | 0.35 | 1.90 | 33.8 | 64.0  | 1.00 | 4.11 | 83.2 | 11.6 | 1.2  | 5.9  | 7.4  | 1.2      | 5.5  | 8.0  | 0.7  | 47.1 | 44.7 | 19.4 |
| Po 1st CI Conc 1-3                   |                                         | 5.0  | 0.34 | 1.86 | 33.9 | 63.9  | 0.97 | 4.00 | 83.7 | 11.3 | 1.7  | 8.2  | 10.6 | 1.7      | 7.7  | 11.4 | 1.0  | 65.1 | 62.0 | 27.8 |
| Po Ro Conc 1-3                       |                                         | 18.8 | 0.14 | 1.03 | 31.9 | 66.9  | 0.40 | 1.73 | 81.1 | 16.8 | 2.6  | 16.9 | 37.2 | 2.6      | 12.4 | 41.2 | 5.5  |      |      |      |
| Cu/Ni Ro Conc 1-3&Po Ro C            | Conc 1-3                                | 37.2 | 2.69 | 2.81 | 32.9 | 61.6  | 7.79 | 6.80 | 72.6 | 12.8 | 99.2 | 91.2 | 76.0 | 99.2     | 96.1 | 73.1 | 8.3  |      |      |      |
| Po Ro Feed                           |                                         | 81.6 | 0.04 | 0.36 | 12.1 | 87.5  | 0.12 | 0.53 | 30.8 | 68.5 | 3.4  | 25.7 | 61.2 | 3.4      | 16.3 | 68.2 | 97.2 |      |      |      |

| Purpose:          | Similar to F9, with 100/10 Na2SO3 and DETA                                                                                                            |                          |                                                             |                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|----------------|
| Procedure:        | As outlined below.                                                                                                                                    |                          |                                                             |                |
| Feed:             | 2kg SN Comp -10 mesh                                                                                                                                  | Freezer\SEC-11C          |                                                             |                |
| Grind:<br>Regrind | 20 minutes at 65% solids in 2 kg Rod Mill # 3<br>12 minutes at 50% solids in 2 kg Rod Mill for 0<br>15 minutes at 50% solids in Attrition Mill for Po | Cu/Ni R.Conc<br>o R.Conc | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 30 μm<br>17 μm |

July 6, 2021

Operator: Deepak

### Conditions:

Test: F11

Project: 18559-01

|                                            |       |       | Reagents | added, gran | ns per tonne |       | -     | Time, minute | es    |             |            |                      |
|--------------------------------------------|-------|-------|----------|-------------|--------------|-------|-------|--------------|-------|-------------|------------|----------------------|
| Stage                                      | Lime  | CuSO4 | Na2SO3   | DETA        | PAX          | MIBC* | Grind | Cond.        | Froth | pН          | ORP, mV    | -                    |
| Grind                                      | 625   |       |          |             | 5            |       | 20    |              |       | 9.3         | 150        | -                    |
| Cu/Ni Rougher No. 1                        | 0     |       |          |             |              | 5     |       | 1            | 1     | 9.3         | 158        | -                    |
| Cu/Ni Rougher No. 2<br>Cu/Ni Rougher No. 3 | 0     |       |          |             | 5            | 0     |       | 1            | 2     | 9.1<br>9.0  | 150<br>172 | -                    |
| Regrind (2kg Rod Mill)                     | 175   |       | 100      | 10          | 1            |       | 12    |              |       | 8.9         | 198        | Target pH 9.5        |
| Cu/Ni 1st Cleaner No.1                     | 15    |       |          |             | 2            | 0     |       |              | 2     | 9.5         | 142        | Target P80 ~35 um    |
| Cu/Ni 1st Cleaner Scav                     | 45    |       |          |             | 3            | 0     |       | 1            | 5     | 9.5<br>9.5  | 143        | -                    |
| Cu/Ni 2nd Cleaner                          | 10    |       |          |             | 0            | 0     |       | 1            | 4     | 9.5         | 137        | Target pH 9.5        |
| Cu/Ni 3rd Cleaner                          | 10    |       |          |             | 0            | 0     |       | 1            | 4     | 9.5         | 152        | Target pH 9.5        |
| Po Rougher No. 1                           |       |       |          |             | 5            | 2.5   |       | 1            | 3     | natural pH  | 190        | -                    |
| Po Rougher No. 2                           |       |       |          |             | 5            | 5     |       | 1            | 5     | natural pH  | 189        | -                    |
| Po Rougher No. 3                           |       |       |          |             | 5            | 10    |       |              | 5     | naturai pri | 200        | -                    |
| Po Cleaning on Po Ro Cor                   | n 1-3 |       |          |             |              |       |       |              |       |             |            | ]                    |
| Regrind (Attrition Mill)                   | 300   |       | 100      | 50          | 1            |       | 15    |              |       | 10.5        | 56         | Target pH 9.0        |
| Po 1st Cleaner No.1                        | 0     |       |          |             |              | 0     |       | 1            | 2     | 10.5        | 56         | Taiget Fou ~15-20 um |
| Po 1st Cleaner No.2                        | 10    |       |          |             | 1            | 0     |       | 1            | 2     | 9.0         | 164        |                      |
| Po 1st Cleaner No.3                        | 5     |       |          |             | 1            | 0     |       | 1            | 2     | 9.0         | 98         | -                    |
|                                            |       |       |          |             |              |       |       |              |       |             |            |                      |
| Total                                      | 595   | 0     | 200      | 60          | 35           | 22.5  |       |              | 42    |             |            |                      |

| * | bbA | as | required  |  |
|---|-----|----|-----------|--|
|   | ,   |    | roquirou. |  |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Dreduct                  | We       | eight       |               |               |      | Assa  | ys, % |      |      |       |      |      | 9    | 6 Distributi | on   |      |      | 1 `  |          |      |
|--------------------------|----------|-------------|---------------|---------------|------|-------|-------|------|------|-------|------|------|------|--------------|------|------|------|------|----------|------|
| Product                  | g        | %           | Cu            | Ni            | S    | Other | Ср    | Pn   | Po   | Ga    | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 3rd Cl Conc 1      | 77.0     | 3.8         | 22.1          | 9.51          | 33.4 | 35.0  | 64.1  | 26.3 | 5.9  | 3.66  | 84.2 | 32.1 | 7.9  | 84.2         | 38.9 | 0.6  | 0.2  | 1    |          |      |
| Cu/Ni 3rd Cl Tails       | 8.3      | 0.4         | 5.77          | 12.7          | 34.6 | 46.9  | 16.7  | 34.7 | 45.0 | 3.66  | 2.4  | 4.6  | 0.9  | 2.4          | 5.5  | 0.5  | 0.0  |      |          |      |
| Cu/Ni 2nd Cl Tails       | 19.1     | 0.9         | 2.55          | 7.73          | 34.6 | 55.1  | 7.39  | 20.6 | 65.5 | 6.52  | 2.4  | 6.5  | 2.0  | 2.4          | 7.5  | 1.7  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Scav Conc   | 22.8     | 1.1         | 3.18          | 8.22          | 35.5 | 53.1  | 9.22  | 21.9 | 65.0 | 3.82  | 3.6  | 8.2  | 2.5  | 3.6          | 9.6  | 2.0  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Scav Tails  | 154.8    | 7.7         | 0.63          | 1.87          | 32.7 | 64.8  | 1.83  | 4.08 | 79.8 | 14.3  | 4.8  | 12.7 | 15.5 | 4.8          | 12.1 | 16.5 | 1.9  |      |          |      |
| Po 1st CI Conc 1         | 36.7     | 1.8         | 0.32          | 2.34          | 33.1 | 64.2  | 0.93  | 5.37 | 80.5 | 13.2  | 0.6  | 3.8  | 3.7  | 0.6          | 3.8  | 3.9  | 0.4  |      |          |      |
| Po 1st CI Conc 2         | 16.3     | 0.8         | 0.30          | 1.90          | 34.0 | 63.8  | 0.87  | 4.10 | 84.0 | 11.0  | 0.2  | 1.4  | 1.7  | 0.2          | 1.3  | 1.8  | 0.2  |      |          |      |
| Po 1st CI Conc 3         | 8.2      | 0.4         | 0.34          | 2.40          | 34.3 | 63.0  | 0.99  | 5.50 | 83.5 | 10.03 | 0.1  | 0.9  | 0.9  | 0.1          | 0.9  | 0.9  | 0.1  |      |          |      |
| Po 1st Cl Tails          | 213.3    | 10.6        | 0.12          | 1.23          | 33.2 | 65.5  | 0.35  | 2.24 | 84.0 | 13.4  | 1.3  | 11.5 | 21.7 | 1.3          | 9.2  | 23.9 | 2.5  |      |          |      |
| Po Ro Tails              | 1454.2   | 72.3        | <0.01         | 0.29          | 9.68 | 90.0  | 0.01  | 0.41 | 24.8 | 74.8  | 0.4  | 18.5 | 43.2 | 0.4          | 11.4 | 48.1 | 94.5 |      |          |      |
| Head (Calc.)             | 2010.7   | 100         | 1.00          | 1.14          | 16.2 | 81.6  | 2.91  | 2.60 | 37.2 | 57.3  | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)              |          |             | 1.07          | 1.17          | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5  |      |      |      |              |      |      |      |      |          |      |
|                          |          | 0.005 was u | used for <0.0 | 01 calculatio | n    |       |       |      |      |       |      |      |      |              |      |      |      | Stag | ge Recov | ery  |
| Combined Products        |          |             |               |               |      |       |       |      |      |       |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 3rd Cl Conc        |          | 3.8         | 22.1          | 9.51          | 33.4 | 35.0  | 64.1  | 26.3 | 5.95 | 3.66  | 84.2 | 32.1 | 7.9  | 84.2         | 38.9 | 0.6  | 0.2  | 86.5 | 52.8     | 2.9  |
| Cu/Ni 2nd Cl Conc        |          | 4.2         | 20.5          | 9.82          | 33.5 | 36.2  | 59.5  | 27.1 | 9.75 | 3.66  | 86.6 | 36.7 | 8.8  | 86.6         | 44.4 | 1.1  | 0.3  | 88.9 | 60.3     | 5.2  |
| Cu/Ni 1st Cl Conc        |          | 5.2         | 17.2          | 9.44          | 33.7 | 39.6  | 49.9  | 25.9 | 20.0 | 4.18  | 89.0 | 43.2 | 10.8 | 89.0         | 51.9 | 2.8  | 0.4  | 91.4 | 70.5     | 13.1 |
| Cu/Ni 1st Cl & Scav Conc |          | 6.3         | 14.7          | 9.22          | 34.0 | 42.0  | 42.6  | 25.2 | 28.0 | 4.12  | 92.6 | 51.4 | 13.3 | 92.6         | 61.5 | 4.8  | 0.5  | 95.0 | 83.6     | 22.4 |
| Cu/Ni Ro Conc 1-3        |          | 14.0        | 6.98          | 5.19          | 33.3 | 54.5  | 20.2  | 13.6 | 56.4 | 9.72  | 97.4 | 64.1 | 28.8 | 97.4         | 73.6 | 21.3 | 2.4  |      |          |      |
| Po 1st CI Conc 1         |          | 1.8         | 0.32          | 2.34          | 33.1 | 64.2  | 0.93  | 5.37 | 80.5 | 13.2  | 0.6  | 3.8  | 3.7  | 0.6          | 3.8  | 3.9  | 0.4  | 26.1 | 25.1     | 12.9 |
| Po 1st Cl Conc 1-2       |          | 2.6         | 0.31          | 2.20          | 33.4 | 64.1  | 0.91  | 4.98 | 81.6 | 12.5  | 0.8  | 5.1  | 5.4  | 0.8          | 5.1  | 5.8  | 0.6  | 36.9 | 33.5     | 18.9 |
| Po 1st CI Conc 1-3       |          | 3.0         | 0.32          | 2.23          | 33.5 | 64.0  | 0.92  | 5.05 | 81.8 | 12.2  | 1.0  | 6.0  | 6.3  | 1.0          | 5.9  | 6.7  | 0.6  | 43.1 | 39.3     | 21.8 |
| Po Ro Conc 1-3           |          | 13.7        | 0.16          | 1.45          | 33.3 | 65.1  | 0.48  | 2.87 | 83.5 | 13.1  | 2.2  | 17.5 | 28.0 | 2.2          | 15.1 | 30.6 | 3.1  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro  | Conc 1-3 | 27.7        | 3.62          | 3.34          | 33.3 | 59.8  | 10.5  | 8.31 | 69.8 | 11.4  | 99.6 | 81.5 | 56.8 | 99.6         | 88.6 | 51.9 | 5.5  |      |          |      |
| Po Ro Feed               |          | 86.0        | 0.03          | 0.47          | 13.4 | 86.1  | 0.09  | 0.80 | 34.1 | 65.0  | 2.6  | 35.9 | 71.2 | 2.6          | 26.4 | 78.7 | 97.6 |      |          |      |

| Test: F12         | Project: 18559-01                                                                                              | Date:                                            | July 12, 2021       | Operator: De                  | epak                                                        |                |
|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|-------------------------------|-------------------------------------------------------------|----------------|
| Purpose:          | Similar to F9, with 0/25 Na2SO3 a                                                                              | nd DETA                                          |                     |                               |                                                             |                |
| Procedure:        | As outlined below.                                                                                             |                                                  |                     |                               |                                                             |                |
| Feed:             | 2kg SN Comp -10 mesh                                                                                           | F                                                | reezer\SEC-11C      |                               |                                                             |                |
| Grind:<br>Regrind | 34 minutes at 65% solids in 2 kg R<br>12 minutes at 50% solids in 2 kg R<br>48 minutes at 50% solids in 2 kg R | od Mill # 3<br>od Mill for Cu/<br>od Mill for Po | Ni R.Conc<br>R.Conc | Cu/Ni Cl Tails<br>Po Cl Tails | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 45 μm<br>30 μm |

# Note:

| Conditions:              |      |       |            |             |              |       |       |              |       |            |         | _              |
|--------------------------|------|-------|------------|-------------|--------------|-------|-------|--------------|-------|------------|---------|----------------|
|                          |      |       | Reagents a | added, gran | ns per tonne |       | -     | Time, minute | es    |            |         |                |
| Stage                    | Lime | CuSO4 | Na2SO3     | DETA        | PAX          | MIBC* | Grind | Cond.        | Froth | pН         | ORP, mV | -              |
| Grind                    | 625  |       |            |             | 5            |       | 34    |              |       | 8.9        | 121     |                |
| Cu/Ni Rougher No. 1      | 15   |       |            |             |              | 0     |       | 1            | 1     | 9.0        | 00      | -              |
| Cu/Ni Rougher No. 2      | 10   |       |            |             | 5            | 0     |       | 1            | 2     | 0.0        | 92      | 1              |
| Cu/Ni Rougher No. 3      | 15   |       |            |             | 5            | 5     |       | 1            | 2     | 9.0        | 170     |                |
| Rearind (2kg Rod Mill)   | 175  |       | 0          | 25          | 1            |       | 12    |              |       | 9.0        | 46      |                |
| Cu/Ni 1st Cleaner No 1   | 30   |       |            | 20          |              | 0     | 12    | 1            | 2     | 9.5        | 104     | Target pri 9.0 |
| Cu/Ni 1st Cleaner No.2   | 20   |       |            |             | 2            | 0     |       | 1            | 2     | 9.5        | 104     | 1              |
| Cu/Ni 1st Cleaner No.3   | 40   |       |            |             | 3            | 0     |       | 1            | 3     | 9.5        | 156     | 1              |
| Cu/Ni 1st Cleaner No.4   | 30   |       |            |             | 3            | 0     |       | 1            | 3     | 9.5        | 158     |                |
| Po Rougher No. 1         |      |       |            |             | 5            | 0     |       | 1            | 3     | natural nH | 202     | -              |
| Po Rougher No. 2         |      |       |            |             | 5            | 5     |       | 1            | 5     | natural pH | 202     | 1              |
| Po Rougher No. 3         |      |       |            |             | 5            | 5     |       | 1            | 5     | natural pH | 212     | -              |
|                          |      |       |            |             |              |       |       |              |       |            |         |                |
| Po Cleaning on Po Ro Con | 1-3  |       |            |             |              |       |       |              |       |            |         |                |
| Regrind (2kg Rod Mill)   | 200  |       | 0          | 25          | 1            |       | 48    |              |       | 9.0        | 171     | Target pH 9.0  |
| Po 1st Cleaner No.1      | 0    |       |            |             |              | 0     |       | 1            | 2     | 9.0        | 171     | -              |
| Po 1st Cleaner No.2      | 40   |       |            |             | 3            | 0     |       | 1            | 2     | 9.0        | 173     | 1              |
| Po 1st Cleaner No.3      | 35   |       |            |             | 10           | 0     |       | 1            | 2     | 9.0        | 176     | 1              |
| Po 1st Cleaner Scavenger | 0    |       |            |             | 30           | 0     |       | 1            | 2     |            |         | 1              |
| Po 2nd Cleaner           | 30   |       |            |             | 0            | 0     |       | 1            | 3     | 9.5        | 136     | -              |
|                          |      |       |            |             |              |       |       |              |       |            |         | 1              |
| Po 3rd Cleaner           | 10   |       |            |             | 0            | 0     |       | 1            | 2     | 9.5        | 156     | 1              |
|                          |      |       |            |             |              |       |       |              |       |            |         | -              |
|                          |      |       |            |             |              |       |       |              |       |            |         |                |
|                          |      |       |            |             |              |       |       |              |       |            |         | -              |
|                          |      |       |            |             |              |       |       |              |       |            |         | -              |
|                          |      |       |            |             |              |       |       |              |       |            |         | 1              |
| Total                    | 650  | 0     | 0          | 50          | 78           | 15    |       |              | 41    |            |         | =              |

| Flotation Cell         2 kg float cell         2 kg float cell         500g/250g float cell         250g float cell | CI | Po 1st & 2nd Cl | Cu/Ni 1st/2nd Cleaner | Po Rougher      | Rougher/Scavenger | Stage          |
|---------------------------------------------------------------------------------------------------------------------|----|-----------------|-----------------------|-----------------|-------------------|----------------|
|                                                                                                                     |    | 250g float cell | 500g/250g float cell  | 2 kg float cell | 2 kg float cell   | Flotation Cell |
| Speed: r.p.m.         1800         1800         1500/1200         1200                                              |    | 1200            | 1500/1200             | 1800            | 1800              | Speed: r.p.m.  |

| Draduat                   | We       | ight |      |      |      | Assay | /s, % |      |      |      |      |      | 9    | 6 Distributio | 'n   |      |      |      |          |      |
|---------------------------|----------|------|------|------|------|-------|-------|------|------|------|------|------|------|---------------|------|------|------|------|----------|------|
| Floduci                   | g        | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср            | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1       | 119.1    | 5.9  | 13.5 | 8.87 | 35.0 | 42.6  | 39.1  | 24.2 | 34.6 | 2.08 | 76.5 | 44.5 | 12.4 | 76.5          | 52.9 | 5.4  | 0.2  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2       | 49.4     | 2.4  | 5.92 | 7.60 | 35.7 | 50.8  | 17.2  | 20.3 | 59.7 | 2.82 | 13.9 | 15.8 | 5.3  | 13.9          | 18.4 | 3.8  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 3       | 74.2     | 3.6  | 1.05 | 3.18 | 36.8 | 59.0  | 3.04  | 7.63 | 86.3 | 3.05 | 3.7  | 9.9  | 8.2  | 3.7           | 10.4 | 8.3  | 0.2  |      |          |      |
| Cu/Ni 1st Cl Conc 4       | 58.8     | 2.9  | 0.23 | 1.50 | 37.1 | 61.2  | 0.67  | 2.87 | 93.3 | 3.17 | 0.6  | 3.7  | 6.5  | 0.6           | 3.1  | 7.1  | 0.2  |      |          |      |
| Cu/Ni 1st Cl Tails        | 204.3    | 10.0 | 0.10 | 0.76 | 32.5 | 66.6  | 0.29  | 0.94 | 83.3 | 15.4 | 1.0  | 6.5  | 19.8 | 1.0           | 3.5  | 22.2 | 2.7  |      |          |      |
| Po 3rd CI Conc            | 22.7     | 1.1  | 0.84 | 3.14 | 37.0 | 59.0  | 2.43  | 7.51 | 87.5 | 2.60 | 0.9  | 3.0  | 2.5  | 0.9           | 3.1  | 2.6  | 0.1  |      |          |      |
| Po 3rd CI Tails           | 21.2     | 1.0  | 0.29 | 1.49 | 34.8 | 63.4  | 0.84  | 2.92 | 87.1 | 9.12 | 0.3  | 1.3  | 2.2  | 0.3           | 1.1  | 2.4  | 0.2  |      |          |      |
| Po 2nd Cl Tails           | 65.6     | 3.2  | 0.16 | 0.94 | 32.2 | 66.7  | 0.46  | 1.46 | 82.0 | 16.1 | 0.5  | 2.6  | 6.3  | 0.5           | 1.8  | 7.0  | 0.9  |      |          |      |
| Po 1st Cl Scav Conc       | 29.9     | 1.5  | 0.18 | 0.85 | 33.4 | 65.6  | 0.52  | 1.17 | 85.3 | 13.0 | 0.3  | 1.1  | 3.0  | 0.3           | 0.6  | 3.3  | 0.3  |      |          |      |
| Po 1st Cl Tails           | 182.9    | 9.0  | 0.09 | 0.56 | 28.9 | 70.4  | 0.27  | 0.50 | 74.4 | 24.8 | 0.8  | 4.3  | 15.8 | 0.8           | 1.7  | 17.7 | 3.9  |      |          |      |
| Po Ro Tails               | 1206.9   | 59.3 | 0.03 | 0.14 | 5.00 | 94.8  | 0.07  | 0.15 | 12.8 | 87.0 | 1.4  | 7.1  | 18.0 | 1.4           | 3.3  | 20.1 | 91.2 |      |          |      |
| Head (Calc.)              | 2035.0   | 100  | 1.03 | 1.17 | 16.5 | 81.3  | 2.99  | 2.67 | 37.7 | 56.6 | 100  | 100  | 100  | 100           | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)               |          |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |               |      |      |      |      |          |      |
|                           |          |      |      |      |      |       |       |      |      |      | -    |      |      |               |      |      |      | Stag | je Recov | ery  |
| Combined Products         |          |      |      |      |      |       |       |      |      |      |      |      |      |               |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1       |          | 5.9  | 13.5 | 8.87 | 35.0 | 42.6  | 39.1  | 24.2 | 34.6 | 2.08 | 76.5 | 44.5 | 12.4 | 76.5          | 52.9 | 5.4  | 0.2  | 79.9 | 59.9     | 11.5 |
| Cu/Ni 1st Cl Conc 1-2     |          | 8.3  | 11.3 | 8.50 | 35.2 | 45.0  | 32.7  | 23.0 | 42.0 | 2.30 | 90.5 | 60.3 | 17.7 | 90.5          | 71.3 | 9.2  | 0.3  | 94.4 | 80.7     | 19.7 |
| Cu/Ni 1st Cl Conc 1-3     |          | 11.9 | 8.15 | 6.87 | 35.7 | 49.3  | 23.6  | 18.3 | 55.5 | 2.53 | 94.2 | 70.3 | 25.9 | 94.2          | 81.7 | 17.5 | 0.5  | 98.3 | 92.5     | 37.4 |
| Cu/Ni 1st Cl Conc 1-4     |          | 14.8 | 6.61 | 5.82 | 36.0 | 51.6  | 19.1  | 15.3 | 62.9 | 2.65 | 94.8 | 74.0 | 32.4 | 94.8          | 84.8 | 24.7 | 0.7  | 99.0 | 96.0     | 52.7 |
| Cu/Ni Ro Conc 1-3         |          | 24.9 | 3.98 | 3.78 | 34.6 | 57.7  | 11.5  | 9.5  | 71.2 | 7.81 | 95.8 | 80.6 | 52.2 | 95.8          | 88.3 | 46.9 | 3.4  |      |          |      |
| Po 3rd Cl Conc            |          | 1.1  | 0.84 | 3.14 | 37.0 | 59.0  | 2.43  | 7.51 | 87.5 | 2.60 | 0.9  | 3.0  | 2.5  | 0.9           | 3.1  | 2.6  | 0.1  | 32.8 | 37.4     | 7.8  |
| Po 2nd Cl Conc            |          | 2.2  | 0.57 | 2.34 | 35.9 | 61.1  | 1.66  | 5.29 | 87.3 | 5.75 | 1.2  | 4.3  | 4.7  | 1.2           | 4.3  | 5.0  | 0.2  | 43.4 | 51.0     | 15.1 |
| Po 1st CI Conc            |          | 5.4  | 0.33 | 1.50 | 33.7 | 64.5  | 0.95  | 3.00 | 84.1 | 12.0 | 1.7  | 6.9  | 11.0 | 1.7           | 6.0  | 12.0 | 1.1  | 61.5 | 72.1     | 36.3 |
| Po 1st CI & CI Scav Conc  |          | 6.9  | 0.29 | 1.36 | 33.6 | 64.7  | 0.85  | 2.60 | 84.4 | 12.2 | 2.0  | 8.0  | 14.0 | 2.0           | 6.7  | 15.3 | 1.5  |      |          |      |
| Po Ro Conc 1-3            |          | 15.8 | 0.18 | 0.91 | 30.9 | 68.0  | 0.52  | 1.41 | 78.7 | 19.4 | 2.8  | 12.3 | 29.8 | 2.8           | 8.4  | 33.0 | 5.4  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro ( | Conc 1-3 | 40.7 | 2.50 | 2.66 | 33.2 | 61.7  | 7.25  | 6.35 | 74.1 | 12.3 | 98.6 | 92.9 | 82.0 | 98.6          | 96.7 | 79.9 | 8.8  |      |          |      |
| Po Ro Feed                |          | 75.1 | 0.06 | 0.30 | 10.5 | 89.2  | 0.17  | 0.41 | 26.7 | 72.7 | 4.2  | 19.4 | 47.8 | 4.2           | 11.7 | 53.1 | 96.6 |      |          |      |

Test: F13

Po 1st Cleaner No.2

Total

| Procedure:                         | As outlined | below.       |                 |                |              |        |   |               |                   |       |            |         |               |
|------------------------------------|-------------|--------------|-----------------|----------------|--------------|--------|---|---------------|-------------------|-------|------------|---------|---------------|
| Feed:                              | 2kg SN Co   | omp -10 me   | sh              |                | Freezer\SI   | EC-11C |   |               |                   |       |            |         |               |
| Grind:                             | 34 minutes  | at 65% soli  | ds in 2 kg R    | od Mill # 3    |              |        |   |               | P <sub>80</sub> = |       |            |         |               |
| Regrind                            | 12 minutes  | at 50% soli  | ds in 2 kg R    | od Mill for C  | u/Ni R.Cond  |        | C | Cu/Ni Cl Feed | P <sub>80</sub> = | 33 µm |            |         |               |
| -                                  | 7.5 minutes | s at 50% sol | ids in Attritic | on Mill for Po | o R.Conc     |        |   | Po Cl Feed    | P <sub>80</sub> = | 21 µm |            |         |               |
| Note:                              | Request P   | o Ro Tails S | /A              |                |              |        |   |               |                   |       |            |         |               |
| Conditions:                        |             |              |                 |                |              |        |   |               |                   |       |            |         |               |
|                                    |             |              | Reagents a      | added, gran    | ns per tonne |        |   | Т             | ïme, minute       | S     |            |         | ]             |
| Stage                              | Lime        | CuSO4        | Na2SO3          | DETA           | PAX          | MIBC*  |   | Grind         | Cond.             | Froth | pН         | ORP, mV |               |
|                                    |             |              |                 |                |              |        |   |               |                   |       |            |         |               |
| Grind                              | 625         |              |                 |                | 5            |        |   | 34            |                   |       | 9.0        | 164     |               |
|                                    |             |              |                 |                |              |        |   |               |                   |       |            |         |               |
| Cu/Ni Rougher No. 1                | 0           |              |                 |                |              | 2.5    |   |               | 1                 | 1     | 9.0        | 164     |               |
| Cu/Ni Rougher No. 2                | 10          |              |                 |                | 5            | 0      |   |               | 1                 | 2     | 9.0        | 168     |               |
| Cu/Ni Rougher No. 3                | 10          |              |                 |                | 5            | 0      |   |               | 1                 | 2     | 9.0        | 174     | ļ             |
| Po Rougher No. 1                   | -           |              |                 |                | 10           | 0      |   |               | 1                 | 3     | natural pH | 175     |               |
| Po Rougher No. 2                   | -           |              |                 |                | 10           | 5      |   |               | 1                 | 3     | natural pH | 222     |               |
|                                    |             |              |                 |                |              |        |   |               |                   |       |            |         | 1             |
| Regrind Comb Ro Conc(2kg Rod Mill) | 200         |              | 0               | 25             | 1            |        |   | 12            |                   |       | 9.3        | 175     | Target pH 9.5 |
| Cu/Ni 1st Cleaner No.1             | 5           |              |                 |                |              | 0      |   |               | 1                 | 2     | 9.5        | 147     | 1             |
| Cu/Ni 1st Cleaner No.2             | 30          |              |                 |                | 2            | 0      |   |               | 1                 | 2     | 9.5        | 152     | 1             |
| Cu/Ni 1st Cleaner No.3             | 25          |              |                 |                | 3            | 0      |   |               | 1                 | 3     | 9.5        | 154     | -             |
| Cu/Ni 1st Cleaner No.4             | 25          |              |                 |                | 5            | 0      |   |               | 1                 | 3     | 9.5        | 146     |               |
|                                    |             |              |                 |                |              |        |   | _             |                   |       |            |         | -             |
| Po Cleaning on Cu/Ni Cleaner Tails |             |              |                 |                |              |        |   |               |                   |       |            |         | ļ             |
| Regrind (Attrition Mill)           | 200         |              | 0               | 10             |              |        |   | 7.5           |                   |       | 9.5        | 165     | ļ             |
| Po 1st Cleaner No.1                | 0           |              |                 |                | 15           | 0      |   |               | 1                 | 3     | 9.5        | 165     |               |

40

96

0

7.5

| Purpose:   | Similar to F9, with 0/25 Na2SO3 and DET.        | A                |               |                   |
|------------|-------------------------------------------------|------------------|---------------|-------------------|
| Procedure: | As outlined below.                              |                  |               |                   |
| Feed:      | 2kg SN Comp -10 mesh                            | Freezer\SEC-11C  |               |                   |
| Grind:     | 34 minutes at 65% solids in 2 kg Rod Mill       | # 3              |               | P <sub>80</sub> = |
| Regrind    | 12 minutes at 50% solids in 2 kg Rod Mill       | for Cu/Ni R.Conc | Cu/Ni Cl Feed | P <sub>80</sub> = |
|            | 7.5 minutes at 50% solids in Attrition Mill for | or Po R.Conc     | Po Cl Feed    | P <sub>80</sub> = |

Date:

July 12, 2021

Operator: Deepak

Project: 18559-01

40

545

0

\* Add as required.

179

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

0

35

1

3

27

9.5

| Broduct                          | We     | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | Q    | % Distributi | on   |      |      | 1 `  |          |      |
|----------------------------------|--------|------|------|------|------|-------|-------|------|------|------|------|------|------|--------------|------|------|------|------|----------|------|
| Floduct                          | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1              | 153.0  | 7.7  | 11.4 | 7.74 | 35.7 | 45.2  | 33.0  | 20.9 | 44.8 | 1.29 | 85.0 | 52.3 | 16.4 | 85.0         | 62.1 | 8.9  | 0.2  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2              | 89.0   | 4.5  | 2.44 | 4.37 | 36.5 | 56.7  | 7.07  | 11.0 | 78.9 | 2.97 | 10.6 | 17.2 | 9.8  | 10.6         | 19.1 | 9.2  | 0.2  |      |          |      |
| Cu/Ni 1st Cl Conc 3              | 94.3   | 4.7  | 0.36 | 1.83 | 37.8 | 60.0  | 1.04  | 3.78 | 94.0 | 1.18 | 1.7  | 7.6  | 10.7 | 1.7          | 6.9  | 11.6 | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 4              | 72.6   | 3.6  | 0.11 | 1.08 | 37.7 | 61.1  | 0.32  | 1.66 | 96.2 | 1.81 | 0.4  | 3.5  | 8.2  | 0.4          | 2.3  | 9.1  | 0.1  |      |          |      |
| Po 1st Cl Conc 1                 | 38.6   | 1.9  | 0.11 | 1.16 | 34.2 | 64.5  | 0.32  | 2.01 | 86.8 | 10.9 | 0.2  | 2.0  | 4.0  | 0.2          | 1.5  | 4.4  | 0.4  |      |          |      |
| Po 1st Cl Conc 2                 | 20.7   | 1.0  | 0.10 | 1.12 | 35.7 | 63.1  | 0.29  | 1.84 | 90.9 | 6.98 | 0.1  | 1.0  | 2.2  | 0.1          | 0.7  | 2.5  | 0.1  |      |          |      |
| Po 1st Cl Tails                  | 217.3  | 10.9 | 0.04 | 0.57 | 31.3 | 68.1  | 0.10  | 0.45 | 80.8 | 18.6 | 0.4  | 5.5  | 20.4 | 0.4          | 1.9  | 22.9 | 3.6  |      |          |      |
| Po Ro Tails                      | 1312.1 | 65.7 | 0.03 | 0.19 | 7.2  | 92.6  | 0.08  | 0.21 | 18.3 | 81.4 | 1.7  | 11.0 | 28.2 | 1.7          | 5.5  | 31.4 | 95.3 |      |          |      |
| Head (Calc.)                     | 1997.6 | 100  | 1.03 | 1.13 | 16.7 | 81.2  | 2.98  | 2.58 | 38.3 | 56.1 | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)                      |        |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |              |      |      |      |      |          |      |
|                                  |        |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      | Sta  | ge Recov | ery  |
| Combined Products                |        |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1              |        | 7.7  | 11.4 | 7.74 | 35.7 | 45.2  | 33.0  | 20.9 | 44.8 | 1.29 | 85.0 | 52.3 | 16.4 | 85.0         | 62.1 | 8.9  | 0.2  |      |          |      |
| Cu/Ni 1st Cl Conc 1-2            |        | 12.1 | 8.10 | 6.50 | 36.0 | 49.4  | 23.5  | 17.3 | 57.3 | 1.91 | 95.5 | 69.4 | 26.2 | 95.5         | 81.1 | 18.1 | 0.4  |      |          |      |
| Cu/Ni 1st Cl Conc 1-3            |        | 16.8 | 5.93 | 5.19 | 36.5 | 52.4  | 17.2  | 13.5 | 67.6 | 1.70 | 97.2 | 77.1 | 36.9 | 97.2         | 88.1 | 29.7 | 0.5  |      |          |      |
| Cu/Ni 1st Cl Conc 1-4            |        | 20.5 | 4.90 | 4.46 | 36.7 | 53.9  | 14.2  | 11.4 | 72.7 | 1.72 | 97.6 | 80.5 | 45.1 | 97.6         | 90.4 | 38.8 | 0.6  |      |          |      |
| Po 1st Cl Conc 1                 |        | 1.9  | 0.11 | 1.16 | 34.2 | 64.5  | 0.32  | 2.01 | 86.8 | 10.9 | 0.2  | 2.0  | 4.0  | 0.2          | 1.5  | 4.4  | 0.4  | 30.0 | 36.4     | 14.7 |
| Po 1st Cl Conc 1-2               |        | 3.0  | 0.11 | 1.15 | 34.7 | 64.0  | 0.31  | 1.95 | 88.2 | 9.5  | 0.3  | 3.0  | 6.2  | 0.3          | 2.2  | 6.8  | 0.5  | 44.7 | 54.3     | 23.0 |
| Cu/Ni 1st Cl Tails/Po Feed       |        | 13.8 | 0.05 | 0.69 | 32.0 | 67.2  | 0.15  | 0.77 | 82.4 | 16.7 | 0.7  | 8.5  | 26.6 | 0.7          | 4.1  | 29.8 | 4.1  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-2 |        | 34.3 | 2.94 | 2.94 | 34.8 | 59.3  | 8.53  | 7.10 | 76.6 | 7.8  | 98.3 | 89.0 | 71.8 | 98.3         | 94.5 | 68.6 | 4.7  |      |          |      |

Conditions:

Feed:

Grind:

Regrind

N/A

|                     |      |   | Reagents a | added, gran | ns per tonne |   | 1     | Time, minute | es    |            |         |
|---------------------|------|---|------------|-------------|--------------|---|-------|--------------|-------|------------|---------|
| Stage               | Lime |   |            | PAX         | MIBC*        |   | Grind | Cond.        | Froth | pН         | ORP, mV |
|                     |      |   |            |             |              |   |       |              |       |            |         |
| Grind               | 350  |   |            | 5           |              |   | 24    |              |       | 9.0        | 388     |
|                     |      |   |            |             |              |   |       |              |       |            |         |
| Cu/Ni Rougher No. 1 | 0    |   |            |             | 0            |   |       | 1            | 1     | 9.0        | 388     |
| Cu/Ni Rougher No. 2 | 0    |   |            | 5           | 0            |   |       | 1            | 2     | 9.0        | 256     |
| Cu/Ni Rougher No. 3 | 0    |   |            | 5           | 5            |   |       | 1            | 2     | 9.0        | 253     |
|                     |      |   |            |             |              |   |       |              |       |            |         |
|                     |      |   |            |             |              |   |       |              |       |            |         |
| Po Rougher No. 1    | 0    |   |            | 10          | 5            |   |       | 1            | 3     | natural pH | 274     |
| Po Rougher No. 2    | 0    |   |            | 10          | 10           |   |       | 1            | 5     | natural pH | 241     |
| Po Rougher No. 3    | 0    |   |            | 10          | 15           |   |       | 1            | 5     | natural pH | 322     |
|                     |      |   |            |             |              |   |       |              |       |            |         |
|                     |      |   |            |             |              |   |       |              |       |            |         |
|                     |      |   |            |             |              |   |       |              |       |            |         |
|                     |      |   |            |             |              |   |       |              |       |            |         |
|                     |      |   |            |             |              |   |       |              |       |            |         |
|                     |      |   |            |             |              |   |       |              |       |            |         |
| Total               | 0    | 0 |            | 40          | 35           | 0 |       |              | 18    |            |         |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Draduat                | We     | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | 9    | 6 Distributi | on   |      |      |
|------------------------|--------|------|------|------|------|-------|-------|------|------|------|------|------|------|--------------|------|------|------|
| Product                | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |
| Cu/Ni Ro Conc 1        | 154.4  | 7.7  | 16.7 | 5.15 | 32.7 | 45.5  | 48.4  | 13.9 | 29.0 | 8.68 | 67.7 | 44.3 | 21.0 | 67.7         | 50.9 | 9.2  | 1.0  |
| Cu/Ni Ro Conc 2        | 196.4  | 9.8  | 4.86 | 2.81 | 34.0 | 58.3  | 14.1  | 6.83 | 69.6 | 9.43 | 25.0 | 30.7 | 27.8 | 25.0         | 31.8 | 28.0 | 1.4  |
| Cu/Ni Ro Conc 3        | 105.0  | 5.2  | 1.84 | 1.47 | 34.2 | 62.5  | 5.33  | 2.94 | 81.5 | 10.3 | 5.1  | 8.6  | 14.9 | 5.1          | 7.3  | 17.5 | 0.8  |
| Po Ro Conc 1           | 96.7   | 4.8  | 0.39 | 1.01 | 34.2 | 64.4  | 1.13  | 1.60 | 86.4 | 10.8 | 1.0  | 5.4  | 13.8 | 1.0          | 3.7  | 17.1 | 0.8  |
| Po Ro Conc 2           | 60.9   | 3.0  | 0.31 | 0.96 | 32.4 | 66.3  | 0.90  | 1.52 | 82.0 | 15.5 | 0.5  | 3.3  | 8.2  | 0.5          | 2.2  | 10.2 | 0.7  |
| Po Ro Conc 3           | 33.8   | 1.7  | 0.28 | 0.86 | 29.6 | 69.3  | 0.81  | 1.33 | 75.0 | 22.9 | 0.2  | 1.6  | 4.2  | 0.2          | 1.1  | 5.2  | 0.6  |
| Po Ro Tails            | 1361.0 | 67.8 | 0.01 | 0.08 | 1.80 | 98.1  | 0.04  | 0.09 | 4.56 | 95.3 | 0.5  | 6.1  | 10.2 | 0.5          | 3.0  | 12.7 | 94.9 |
| Head (Calc.)           | 2008.2 | 100  | 1.90 | 0.89 | 12.0 | 85.2  | 5.50  | 2.10 | 24.3 | 68.1 | 100  | 100  | 100  | 100          | 100  | 100  | 100  |
| Head (Dir.)            |        |      | 1.90 | 0.88 | 11.9 | 85.3  | 5.51  | 2.06 | 24.1 | 68.3 |      |      |      |              |      |      |      |
|                        |        |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      |
| Combined Products      |        |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      |
| Cu/Ni Ro Conc 1        |        | 7.7  | 16.7 | 5.15 | 32.7 | 45.5  | 48.4  | 13.9 | 29.0 | 8.68 | 67.7 | 44.3 | 21.0 | 67.7         | 50.9 | 9.2  | 1.0  |
| Cu/Ni Ro Conc 1-2      |        | 17.5 | 10.1 | 3.84 | 33.4 | 52.7  | 29.2  | 9.94 | 51.8 | 9.10 | 92.7 | 75.0 | 48.8 | 92.7         | 82.7 | 37.2 | 2.3  |
| Cu/Ni Ro Conc 1-3      |        | 22.7 | 8.18 | 3.29 | 33.6 | 54.9  | 23.7  | 8.33 | 58.6 | 9.37 | 97.8 | 83.6 | 63.7 | 97.8         | 90.1 | 54.7 | 3.1  |
| Po Ro Conc 1           |        | 4.8  | 0.39 | 1.01 | 34.2 | 64.4  | 1.13  | 1.60 | 86.4 | 10.8 | 1.0  | 5.4  | 13.8 | 1.0          | 3.7  | 17.1 | 0.8  |
| Po Ro Conc 1-2         |        | 7.8  | 0.36 | 0.99 | 33.5 | 65.1  | 1.04  | 1.57 | 84.7 | 12.7 | 1.5  | 8.7  | 22.0 | 1.5          | 5.9  | 27.4 | 1.5  |
| Po Ro Conc 1-3         |        | 9.5  | 0.35 | 0.97 | 32.8 | 65.9  | 1.00  | 1.52 | 83.0 | 14.5 | 1.7  | 10.3 | 26.1 | 1.7          | 6.9  | 32.6 | 2.0  |
| Cu/Ni & Po Ro Conc 1-3 |        | 32.2 | 5.86 | 2.61 | 33.4 | 58.2  | 17.0  | 6.32 | 65.8 | 10.9 | 99.5 | 93.9 | 89.8 | 99.5         | 97.0 | 87.3 | 5.1  |
| Po Ro Feed             |        | 77.3 | 0.05 | 0.19 | 5.62 | 94.1  | 0.16  | 0.27 | 14.2 | 85.3 | 2.2  | 16.4 | 36.3 | 2.2          | 9.9  | 45.3 | 96.9 |

| Test: F15         | Project: 18559-01                       | Date: July 13, 2021      | Operator: Deep | vak                      |
|-------------------|-----------------------------------------|--------------------------|----------------|--------------------------|
| Purpose:          | Conduct rougher kinetics test or        | n P Comp, target ~150 um |                |                          |
| Procedure:        | As outlined below.                      |                          |                |                          |
| Feed:             | 2kg P Comp -10 mesh                     | Freezer\SEC-11C          | Box 115025     |                          |
| Grind:<br>Regrind | 20 minutes at 65% solids in 2 kg<br>N/A | g Rod Mill #3            | Comb Prod      | P <sub>80</sub> = 147 μm |

## Conditions:

|                     |      |   | Reagents | added, gran | ns per tonne |   | T     | Time, minutes         PH           Grind         Cond.         Froth         pH           20         9.0         9.0           1         1         9.0           1         1         9.0           1         2         9.0           1         2         9.0           1         2         9.0           1         2         9.0           1         3         natural pH           1         5         natural pH |       |            |         |
|---------------------|------|---|----------|-------------|--------------|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------|
| Stage               | Lime |   |          | PAX         | MIBC*        |   | Grind | Cond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Froth | pН         | ORP, mV |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
| Grind               | 550  |   |          | 5           |              |   | 20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 9.0        | 441     |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
| Cu/Ni Rougher No. 1 | 0    |   |          |             | 5            |   |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 9.0        | 416     |
| Cu/Ni Rougher No. 2 | 5    |   |          | 5           | 0            |   |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2     | 9.0        | 276     |
| Cu/Ni Rougher No. 3 | 20   |   |          | 5           | 0            |   |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2     | 9.0        | 229     |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
| Po Rougher No. 1    | 0    |   |          | 20          | 5            |   |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3     | natural pH | 248     |
| Po Rougher No. 2    | 0    |   |          | 20          | 5            |   |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5     | natural pH | 256     |
| Po Rougher No. 3    | 0    |   |          | 20          | 15           |   |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5     | natural pH | 262     |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
|                     |      |   |          |             |              |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |
| Total               | 25   | 0 |          | 70          | 30           | 0 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18    |            |         |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Broduct                | We     | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | %    | 6 Distributio | on   |      |      |
|------------------------|--------|------|------|------|------|-------|-------|------|------|------|------|------|------|---------------|------|------|------|
| FIOUUCI                | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср            | Pn   | Po   | Ga   |
| Cu/Ni Ro Conc 1        | 44.9   | 2.2  | 12.7 | 7.95 | 27.6 | 51.8  | 36.8  | 21.8 | 19.5 | 21.9 | 68.8 | 22.5 | 5.8  | 68.8          | 27.3 | 1.7  | 0.7  |
| Cu/Ni Ro Conc 2        | 110.9  | 5.5  | 1.70 | 4.72 | 33.0 | 60.6  | 4.93  | 12.1 | 70.8 | 12.1 | 22.8 | 33.1 | 17.0 | 22.8          | 37.4 | 15.5 | 0.9  |
| Cu/Ni Ro Conc 3        | 96.1   | 4.8  | 0.29 | 1.83 | 33.6 | 64.3  | 0.84  | 3.92 | 83.1 | 12.1 | 3.4  | 11.1 | 15.0 | 3.4           | 10.5 | 15.8 | 0.8  |
| Po Ro Conc 1           | 128.6  | 6.4  | 0.09 | 1.14 | 34.2 | 64.6  | 0.27  | 1.95 | 86.9 | 10.9 | 1.4  | 9.3  | 20.4 | 1.4           | 7.0  | 22.1 | 1.0  |
| Po Ro Conc 2           | 96.6   | 4.8  | 0.07 | 1.03 | 30.9 | 68.0  | 0.21  | 1.76 | 78.6 | 19.5 | 0.9  | 6.3  | 13.9 | 0.9           | 4.7  | 15.0 | 1.3  |
| Po Ro Conc 3           | 45.7   | 2.3  | 0.08 | 0.93 | 30.5 | 68.5  | 0.22  | 1.49 | 77.7 | 20.5 | 0.4  | 2.7  | 6.5  | 0.4           | 1.9  | 7.0  | 0.6  |
| Po Ro Tails            | 1491.3 | 74.0 | 0.01 | 0.16 | 3.09 | 96.7  | 0.04  | 0.27 | 7.76 | 91.9 | 2.3  | 15.1 | 21.4 | 2.3           | 11.2 | 22.9 | 94.7 |
| Head (Calc.)           | 2014.1 | 100  | 0.41 | 0.79 | 10.7 | 88.1  | 1.19  | 1.78 | 25.1 | 71.9 | 100  | 100  | 100  | 100           | 100  | 100  | 100  |
| Head (Dir.)            |        |      | 0.42 | 0.79 | 10.4 | 88.4  | 1.22  | 1.80 | 24.4 | 72.6 |      |      |      |               |      |      |      |
|                        |        |      |      |      |      |       |       |      |      |      |      |      |      |               |      |      |      |
| Combined Products      |        |      |      |      |      |       |       |      |      |      |      |      |      |               |      |      |      |
| Cu/Ni Ro Conc 1        |        | 2.2  | 12.7 | 7.95 | 27.6 | 51.8  | 36.8  | 21.8 | 19.5 | 21.9 | 68.8 | 22.5 | 5.8  | 68.8          | 27.3 | 1.7  | 0.7  |
| Cu/Ni Ro Conc 1-2      |        | 7.7  | 4.87 | 5.65 | 31.4 | 58.0  | 14.1  | 14.9 | 56.1 | 14.9 | 91.6 | 55.6 | 22.8 | 91.6          | 64.7 | 17.3 | 1.6  |
| Cu/Ni Ro Conc 1-3      |        | 12.5 | 3.12 | 4.19 | 32.3 | 60.4  | 9.05  | 10.7 | 66.4 | 13.8 | 94.9 | 66.7 | 37.8 | 94.9          | 75.2 | 33.0 | 2.4  |
| Po Ro Conc 1           |        | 6.4  | 0.09 | 1.14 | 34.2 | 64.6  | 0.27  | 1.95 | 86.9 | 10.9 | 1.4  | 9.3  | 20.4 | 1.4           | 7.0  | 22.1 | 1.0  |
| Po Ro Conc 1-2         |        | 11.2 | 0.08 | 1.09 | 32.8 | 66.0  | 0.25  | 1.87 | 83.3 | 14.6 | 2.3  | 15.5 | 34.3 | 2.3           | 11.7 | 37.1 | 2.3  |
| Po Ro Conc 1-3         |        | 13.5 | 0.08 | 1.07 | 32.4 | 66.5  | 0.24  | 1.80 | 82.4 | 15.6 | 2.7  | 18.2 | 40.8 | 2.7           | 13.6 | 44.1 | 2.9  |
| Cu/Ni & Po Ro Conc 1-3 |        | 26.0 | 1.55 | 2.57 | 32.3 | 63.5  | 4.49  | 6.10 | 74.7 | 14.7 | 97.7 | 84.9 | 78.6 | 97.7          | 88.8 | 77.1 | 5.3  |
| Po Ro Feed             |        | 87.5 | 0.02 | 0.30 | 7.60 | 92.1  | 0.07  | 0.51 | 19.2 | 80.2 | 5.1  | 33.3 | 62.2 | 5.1           | 24.8 | 67.0 | 97.6 |

| Test: F16         | Project: 18559-01                                                                                                             | Date: July 16, 2021                               | Operator: Deepak                                                              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|
| Purpose:          | Similar to F9, with no Na2SO3 and 25 D                                                                                        | ETA. Full Cleaner test with CuSEP                 |                                                                               |
| Procedure:        | As outlined below.                                                                                                            |                                                   |                                                                               |
| Feed:             | 2kg SN Comp -10 mesh                                                                                                          | Freezer\SEC-11C                                   |                                                                               |
| Grind:<br>Regrind | 34 minutes at 65% solids in 2 kg Rod Mi<br>12 minutes at 50% solids in 2 kg Rod Mi<br>48 minutes at 50% solids in 2 kg Rod Mi | ll # 3<br>Il for Cu/Ni R.Conc<br>Il for Po R.Conc | Ρ <sub>80</sub> =<br>Ρ <sub>80</sub> =<br>Po Ro Tails Ρ <sub>80</sub> = 35 μm |

Conditions:

|                                    |               |             | Reagents | added, gran | ns per tonne |       |   | -     | Time, minute | es    |            |         |                |                      |
|------------------------------------|---------------|-------------|----------|-------------|--------------|-------|---|-------|--------------|-------|------------|---------|----------------|----------------------|
| Stage                              | Lime          | CuSO4       | Na2SO3   | DETA        | PAX          | MIBC* |   | Grind | Cond.        | Froth | pН         | ORP, mV |                |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         | -              |                      |
| Grind                              | 625           |             |          |             | 5            |       |   | 34    |              |       | 9.0        | 42      | -              |                      |
| Cu/Ni Roughor No. 1                |               |             |          |             |              |       |   |       | 1            | 2     | 0.0        |         | -              |                      |
| Cu/Ni Rougher No. 1                | 5             |             |          |             | 5            |       |   |       | 1            | 2     | 9.0        | 42      | -              |                      |
| Cu/Ni Rougher No. 2                | 25            |             |          |             | 5            |       |   |       | 1            | 2     | 9.0        | 149     | T              | 00 F0/ Ox 750/ NE    |
|                                    | 23            |             |          |             | 5            |       |   |       | - '          | 2     | 9.0        | 148     | Target 20 wt%  | . ~ 96.5% Cu, 75% Ni |
| Rearind (2kg Rod Mill)             | 225           |             | 0        | 25          | 2            |       |   | 12    |              |       | 9.4        | 125     | Target nH 9 5  |                      |
| Cu/Ni 1st Cleaner No.1             | 5             |             | <u> </u> | 20          | -            |       |   |       | 1            | 2     | 9.5        | 102     | Target pir 8.5 |                      |
| Cu/Ni 1st Cleaner No.2             | 10            |             |          |             | 1            |       |   |       | 1            | 3     | 9.5        | 126     | 1              |                      |
|                                    |               |             |          |             |              |       |   |       |              |       | 0.0        | 120     | 1              |                      |
| Cu/Ni Cleaner Scav                 | 30            |             |          |             | 2            |       |   |       | 1            | 3     | 9.5        | 116     | 1              |                      |
|                                    |               |             |          |             |              |       |   |       |              | -     |            | 110     | 1              |                      |
| Cu/Ni 2nd Cleaner                  | 15            |             |          |             | 0            | 0     |   |       | 1            | 4     | 9.5        | 124     | Target pH 9.5  |                      |
|                                    |               |             |          |             |              | -     |   |       |              |       |            | 124     | Target pri 0.0 |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         |                |                      |
| Po Rougher No. 1                   | -             |             |          |             | 5            |       |   |       | 1            | 3     | natural pH | 168     | 1              |                      |
| Po Rougher No. 2                   | -             |             |          |             | 5            |       |   |       | 1            | 5     | natural pH | 132     | 1              |                      |
| Po Rougher No. 3                   | -             |             |          |             | 5            |       |   |       | 1            | 5     | natural pH | 171     | 1              |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         | 1              |                      |
| Po Cleaning on (Po Ro Con 1-3 + Cu | /Ni Cleaner S | Scav Tails) |          |             |              |       |   |       |              |       |            |         | 1              |                      |
| Regrind (2kg Rod Mill)             | 300           |             | 0        | 50          | 0            |       |   | 48    |              |       | 9.1        | 0       | Target pH 9.0  |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         |                |                      |
| Po 1st Cleaner                     | 0             |             |          |             | 2            |       |   |       | 1            | 2     | 9.0        | -3      |                |                      |
| Po 1st Cleaner Scav                | 30            |             |          |             | 2            |       |   |       | 1            | 2     | 9.0        | 104     |                |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         |                |                      |
| Po 2nd Cleaner                     | 20            |             |          |             |              |       |   |       | 1            | 2     | 9.0        | 77      |                |                      |
| Po 2nd Cleaner Scav                | -             |             |          | 5           | 1            |       |   |       | 1            | 0.5   |            |         | _              |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         |                |                      |
| Po 3rd Cleaner                     | 5             |             |          | 5           | 1            |       |   |       | 1            | 1     | 9.3        | 113     |                |                      |
|                                    |               |             |          |             |              |       |   |       |              |       |            |         |                |                      |
|                                    | _             |             |          |             |              |       |   |       |              |       |            |         | -              |                      |
| CuSEP                              | _             |             |          |             |              |       |   |       |              |       |            |         | -              |                      |
| COND                               | 130           |             |          |             |              |       |   |       | 10           |       | 11.5       | -5      | target pH 11   |                      |
| Cu Ro 1                            | 35            |             |          |             | 0            |       |   |       | 1            | 2     | 11.5       | -50     | 4              |                      |
| Cu Ro 2                            |               |             |          |             | 0            |       |   |       | 1            | 2     |            |         | 4              |                      |
| Cu Ro Scav                         |               |             |          |             | 1            |       |   |       | 1            | 2     |            |         | -              |                      |
|                                    | _             |             |          |             |              |       |   |       |              |       |            |         | -              |                      |
|                                    | 105           |             |          |             | 0            |       |   |       | 1            | 4     | 11.5       | -35     | 4              |                      |
|                                    |               |             |          |             |              |       |   |       |              | -     | 44.5       | -       | 4              |                      |
|                                    | 80            | +           |          |             | 0            |       |   |       |              | 3     | 11.5       | -3      | 4              |                      |
|                                    | 90            | -           |          |             | 0            |       |   |       | 1            | 2.5   | 11.5       | -19     | 4              |                      |
| Total                              | 040           |             |          | 95          | 27           |       | 1 | 1     | 1            | 10 E  |            |         | =              |                      |
| TUtal                              | 940           | U U         | 0        | 00          | 1 3/         | U U   | 1 | 1     | 1            | 40.0  | 1          |         | 1              |                      |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Broduct                              | We     | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | %    | Distributio | n    |      |      | `    |         |      |
|--------------------------------------|--------|------|------|------|------|-------|-------|------|------|------|------|------|------|-------------|------|------|------|------|---------|------|
| Fiblact                              | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Ро   | Ga   | Cu   | Ni   | S    | Ср          | Pn   | Ро   | Ga   |      |         |      |
| Cu 3rd Cleaner Conc                  | 49.0   | 2.4  | 28.8 | 2.13 | 35.1 | 34.0  | 83.5  | 5.8  | 10.3 | 0.42 | 68.8 | 4.4  | 5.3  | 68.8        | 5.2  | 0.7  | 0.0  |      |         |      |
| Cu 3rd Cleaner Tails                 | 9.8    | 0.5  | 13.4 | 13.9 | 33.1 | 39.6  | 38.8  | 38.4 | 17.8 | 5.01 | 6.4  | 5.8  | 1.0  | 6.4         | 6.9  | 0.2  | 0.0  |      |         |      |
| Cu 2nd Cleaner Tails                 | 14.3   | 0.7  | 9.49 | 17.8 | 33.2 | 39.5  | 27.5  | 49.2 | 19.1 | 4.24 | 6.6  | 10.8 | 1.5  | 6.6         | 13.0 | 0.4  | 0.1  |      |         |      |
| Cu 1st Cleaner Tails                 | 16.8   | 0.8  | 3.65 | 21.2 | 33.4 | 41.8  | 10.6  | 58.5 | 27.0 | 3.93 | 3.0  | 15.1 | 1.7  | 3.0         | 18.2 | 0.6  | 0.1  |      |         |      |
| Cu Ro Scav Conc                      | 13.3   | 0.7  | 6.37 | 16.9 | 34.9 | 41.8  | 18.5  | 46.5 | 34.0 | 1.0  | 4.1  | 9.6  | 1.4  | 4.1         | 11.4 | 0.6  | 0.0  |      |         |      |
| Cu Ro Scav Tails                     | 10.5   | 0.5  | 1.01 | 12.4 | 32.9 | 53.7  | 2.93  | 33.7 | 53.9 | 9.5  | 0.5  | 5.5  | 1.1  | 0.5         | 6.5  | 0.8  | 0.1  |      |         |      |
| Cu/Ni 2nd Cleaner Tails              | 47.3   | 2.3  | 0.84 | 3.73 | 35.1 | 60.3  | 2.43  | 9.23 | 81.0 | 7.3  | 1.9  | 7.5  | 5.1  | 1.9         | 8.1  | 5.1  | 0.3  |      |         |      |
| Cu/Ni Cleaner Scav Conc              | 37.2   | 1.8  | 0.94 | 4.33 | 36.0 | 58.7  | 2.72  | 10.9 | 81.7 | 4.7  | 1.7  | 6.8  | 4.1  | 1.7         | 7.5  | 4.1  | 0.1  |      |         |      |
| Po 3rd Cleaner Conc                  | 8.9    | 0.4  | 1.49 | 4.48 | 37.3 | 56.7  | 4.32  | 11.3 | 83.3 | 1.11 | 0.6  | 1.7  | 1.0  | 0.6         | 1.9  | 1.0  | 0.0  |      |         |      |
| Po 3rd Cleaner Tails                 | 10.2   | 0.5  | 0.60 | 2.09 | 36.8 | 60.5  | 1.74  | 4.55 | 90.1 | 3.61 | 0.3  | 0.9  | 1.2  | 0.3         | 0.9  | 1.2  | 0.0  |      |         |      |
| Po 2nd Cleaner Scav Conc             | 6.2    | 0.3  | 0.46 | 2.27 | 36.8 | 60.5  | 1.33  | 5.05 | 90.0 | 3.57 | 0.1  | 0.6  | 0.7  | 0.1         | 0.6  | 0.7  | 0.0  |      |         |      |
| Po 2nd Cleaner Scav Tails            | 40.9   | 2.0  | 0.23 | 1.28 | 34.1 | 64.4  | 0.67  | 2.35 | 85.9 | 11.0 | 0.5  | 2.2  | 4.3  | 0.5         | 1.8  | 4.7  | 0.4  |      |         |      |
| Po 1st Cleaner Scav Conc             | 23.2   | 1.1  | 0.56 | 2.42 | 33.5 | 63.5  | 1.62  | 5.59 | 80.7 | 12.0 | 0.6  | 2.4  | 2.4  | 0.6         | 2.4  | 2.5  | 0.2  |      |         |      |
| Po 1st Cleaner Scav Tails            | 519.0  | 25.6 | 0.14 | 0.85 | 31.1 | 67.9  | 0.41  | 1.25 | 79.3 | 19.0 | 3.5  | 18.8 | 49.6 | 3.5         | 11.9 | 55.3 | 8.4  |      |         |      |
| Po Ro Tails                          | 1223.9 | 60.3 | 0.02 | 0.15 | 5.23 | 94.6  | 0.06  | 0.17 | 13.4 | 86.4 | 1.2  | 7.8  | 19.7 | 1.2         | 3.8  | 22.0 | 90.2 |      |         |      |
| Head (Calc.)                         | 2030.5 | 100  | 1.01 | 1.16 | 16.0 | 81.8  | 2.93  | 2.67 | 36.7 | 57.7 | 100  | 100  | 100  | 100         | 100  | 100  | 100  |      |         |      |
| Head (Dir.)                          |        |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5 |      |      |      |             |      |      |      |      |         |      |
|                                      |        |      |      |      |      |       |       |      |      |      |      |      |      |             |      |      |      | Stag | e Recov | ery  |
| Combined Products                    |        |      |      |      |      |       |       |      |      |      |      |      |      |             |      |      |      | Ср   | Pn      | Po   |
| Cu 3rd Cleaner Conc                  |        | 2.4  | 28.8 | 2.13 | 35.1 | 34.0  | 83.5  | 5.8  | 10.3 | 0.42 | 68.8 | 4.4  | 5.3  | 68.8        | 5.2  | 0.7  | 0.0  | 91.5 | 42.9    | 74.4 |
| Cu 2nd Cleaner Conc                  |        | 2.9  | 26.2 | 4.09 | 34.8 | 34.9  | 76.0  | 11.2 | 11.6 | 1.18 | 75.2 | 10.2 | 6.3  | 75.2        | 12.2 | 0.9  | 0.1  | 91.9 | 48.4    | 71.4 |
| Cu 1st Cleaner Conc                  |        | 3.6  | 23.0 | 6.77 | 34.5 | 35.8  | 66.5  | 18.6 | 13.0 | 1.78 | 81.8 | 21.0 | 7.7  | 81.8        | 25.2 | 1.3  | 0.1  | 96.5 | 58.1    | 67.8 |
| Cu Ro Conc                           |        | 4.4  | 19.3 | 9.47 | 34.3 | 36.9  | 56.1  | 26.1 | 15.6 | 2.18 | 84.8 | 36.2 | 9.5  | 84.8        | 43.3 | 1.9  | 0.2  | 94.8 | 70.7    | 58.0 |
| Cu Ro & Scav Conc                    |        | 5.1  | 17.7 | 10.4 | 34.3 | 37.6  | 51.2  | 28.7 | 18.0 | 2.03 | 88.9 | 45.7 | 10.9 | 88.9        | 54.7 | 2.5  | 0.2  | 99.4 | 89.3    | 76.7 |
| Cu/Ni 2nd Cl Conc                    |        | 5.6  | 16.1 | 10.6 | 34.2 | 39.0  | 46.8  | 29.2 | 21.3 | 2.72 | 89.4 | 51.3 | 12.0 | 89.4        | 61.3 | 3.3  | 0.3  | 97.9 | 88.4    | 38.8 |
| Cu/Ni 1st Cl Conc                    |        | 7.9  | 11.6 | 8.59 | 34.5 | 45.3  | 33.7  | 23.3 | 38.9 | 4.06 | 91.4 | 58.8 | 17.1 | 91.4        | 69.3 | 8.4  | 0.6  |      |         |      |
| Cu/Ni 1st Cl & Scav Conc             |        | 9.8  | 9.63 | 7.79 | 34.8 | 47.8  | 27.9  | 21.0 | 46.9 | 4.18 | 93.1 | 65.6 | 21.2 | 93.1        | 76.8 | 12.5 | 0.7  |      |         |      |
| Po 3rd Cleaner Conc                  |        | 0.4  | 1.49 | 4.48 | 37.3 | 56.7  | 4.32  | 11.3 | 83.3 | 1.11 | 0.6  | 1.7  | 1.0  | 0.6         | 1.9  | 1.0  | 0.0  | 68.4 | 68.4    | 44.6 |
| Po 2nd Cleaner Conc                  |        | 0.9  | 1.01 | 3.20 | 37.0 | 58.7  | 2.94  | 7.69 | 86.9 | 2.44 | 0.9  | 2.6  | 2.2  | 0.9         | 2.7  | 2.2  | 0.0  | 61.3 | 53.5    | 29.0 |
| Po 2nd Cleaner & Scav Conc           |        | 1.2  | 0.88 | 2.97 | 37.0 | 59.2  | 2.55  | 7.04 | 87.7 | 2.72 | 1.1  | 3.2  | 2.9  | 1.1         | 3.3  | 3.0  | 0.1  | 70.3 | 64.9    | 38.7 |
| Po 1st Cleaner Conc                  |        | 3.3  | 0.48 | 1.93 | 35.2 | 62.4  | 1.39  | 4.15 | 86.6 | 7.86 | 1.5  | 5.4  | 7.2  | 1.5         | 5.1  | 7.7  | 0.4  | 27.0 | 26.1    | 11.8 |
| Po 1st Cleaner & Scav Conc           |        | 4.4  | 0.50 | 2.06 | 34.8 | 62.7  | 1.45  | 4.52 | 85.1 | 8.94 | 2.2  | 7.8  | 9.5  | 2.2         | 7.5  | 10.2 | 0.7  | 38.1 | 38.5    | 15.6 |
| Po Ro Conc 1-3 & Cu/Ni Cl Scav Tails |        | 30.0 | 0.19 | 1.03 | 31.6 | 67.1  | 0.56  | 1.73 | 80.2 | 17.5 | 5.7  | 26.6 | 59.2 | 5.7         | 19.4 | 65.5 | 9.1  |      |         |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3     |        | 39.7 | 2.51 | 2.69 | 32.4 | 62.4  | 7.28  | 6.46 | 72.0 | 14.2 | 98.8 | 92.2 | 80.3 | 98.8        | 96.2 | 78.0 | 9.8  |      |         |      |

| Grind:<br>Regrind   | 22 minutes<br>12 minutes<br>10 minutes | at 65% soli<br>at 50% soli<br>at 50% soli<br>at 50% soli | ds in 2 kg R<br>ds in 2 kg R<br>ds in Attrition | od Mill # 3<br>od Mill for C<br>n Mill for Po | u/Ni R.Conc<br>R.Conc |          | Cu /Ni<br>Po | 1st Cl Tails<br>1st Cl Tails                                        | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = |   |  |
|---------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------|----------|--------------|---------------------------------------------------------------------|-------------------------------------------------------------|---|--|
| Conditions:         |                                        |                                                          |                                                 |                                               |                       |          |              | Cu /Ni 1st Cl Tails<br>Po 1st Cl Tails<br>Time, r<br>Grind Co<br>22 |                                                             |   |  |
|                     |                                        |                                                          | Reagents                                        | added, gran                                   | ns per tonne          | onne Tim |              |                                                                     |                                                             |   |  |
| Stage               | e Lime                                 |                                                          | Na2SO3                                          | DETA                                          | PAX                   | MIBC*    |              | Grind                                                               | Cond.                                                       |   |  |
|                     |                                        |                                                          |                                                 |                                               |                       |          |              |                                                                     |                                                             |   |  |
| Grind               | 350                                    |                                                          |                                                 |                                               | 5                     |          |              | 22                                                                  |                                                             |   |  |
|                     |                                        |                                                          |                                                 |                                               |                       |          |              |                                                                     |                                                             |   |  |
| Cu/Ni Rougher No. 1 | 0                                      |                                                          |                                                 |                                               |                       | 0        |              |                                                                     | 1                                                           | Γ |  |
| Cu/Ni Rougher No. 2 | 5                                      |                                                          |                                                 |                                               | 5                     | 5        |              |                                                                     | 1                                                           |   |  |
| Cu/Ni Rougher No. 3 | 5                                      |                                                          |                                                 |                                               | 7.5                   | 2.5      |              |                                                                     | 1                                                           |   |  |
|                     |                                        |                                                          |                                                 |                                               |                       |          |              |                                                                     |                                                             |   |  |

July 20, 2021

Freezer\SEC-12C Box 115029

Operator: Deepak

158 μm 51 μm 50 μm

Froth

pН

9.0

ORP, mV

134

| 0   |                                        |                                                                         |           |      | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 1                                                     | 9.0                                                    | 134                                                    | 7             |
|-----|----------------------------------------|-------------------------------------------------------------------------|-----------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------|
| 5   |                                        |                                                                         |           | 5    | 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2                                                     | 9.0                                                    | 256                                                    | 1             |
| 5   |                                        |                                                                         |           | 7.5  | 2.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2+0.5                                                 | 9.0                                                    | 253                                                    |               |
|     |                                        |                                                                         |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                        |                                                        |               |
| 225 |                                        |                                                                         | 25        | 1    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                       | 9.5                                                    | 128                                                    | Target pH 9.5 |
| 0   |                                        |                                                                         |           |      | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2                                                     | 9.5                                                    | 128                                                    |               |
| 15  |                                        |                                                                         |           | 1    | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2                                                     | 9.5                                                    | 151                                                    |               |
| 25  |                                        |                                                                         |           | 2    | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 3                                                     | 9.5                                                    | 154                                                    |               |
| 10  |                                        |                                                                         |           | 2    | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 3                                                     | 9.5                                                    | 162                                                    | ]             |
|     |                                        |                                                                         |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                        |                                                        |               |
|     |                                        |                                                                         |           | 10   | 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 3                                                     | natural pH                                             | 188                                                    |               |
|     |                                        |                                                                         |           | 10   | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 5                                                     | natural pH                                             | 210                                                    |               |
|     |                                        |                                                                         |           | 10   | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 5                                                     | natural pH                                             | 226                                                    | 4             |
| 1-3 | Attrition Mil                          | l<br><mark>I with Ceran</mark>                                          | nic Balls |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                        |                                                        | -             |
| 175 |                                        |                                                                         | 25        | 1    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                       | 9.6                                                    | 143                                                    | Target pH 9.0 |
|     |                                        |                                                                         |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       | 9.6                                                    |                                                        |               |
| 0   |                                        |                                                                         | 0         |      | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2                                                     | 9.0                                                    | 143                                                    |               |
| 0   |                                        |                                                                         | 5         | 1+1  | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2                                                     | 9.0                                                    | 180                                                    | 7             |
| 10  |                                        |                                                                         | 0         | 1+1  | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                     | 2                                                     | 9.0                                                    | 182                                                    |               |
|     |                                        |                                                                         |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                        |                                                        | 4             |
| 470 | 0                                      | 0                                                                       | 55        | 49.5 | 32.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 32                                                    |                                                        |                                                        | =             |
|     | 0<br>5<br>5<br>0<br>15<br>25<br>10<br> | 0 5 5 5 225 0 15 25 10 15 25 10 1-3 Attrition Mil 175 0 0 10 10 470 0 0 | 0         | 0    | 0    | 0       0       0       0         5       5       5       5         5       7.5       2.5         225       25       1         0       25       1         0       1       0         25       25       1         0       2       0         10       2       0         10       2       0         10       10       5         10       10       10         10       10       10         10       10       10         113       4ttrition Mill with Ceramic Balls       10         113       10       10       10         114       0       0       0       0         115       25       1       10       10         115       25       1       10       10       10         115       25       1       10       10       10         115       25       1       10       10       10       10         115       25       1       10       10       10       10       10       10       10 <td>0       0       0         5       5       5         5       7.5       2.5         0       7.5       2.5         0       25       1         0       0       0         15       1       0         25       2       0         10       2       0         10       2       0         10       10       5         10       10       10         10       10       10         110       10       10         10       10       10         113       10       10         10       10       10         113       4ttrition Mill with Ceramic Balls       10         113       10       10       10         113       10       10       10         113       10       10       10         114       0       10       10         115       11       0       10         114       0       114       0         115       114       0       114         10       114       0</td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>0      </td> | 0       0       0         5       5       5         5       7.5       2.5         0       7.5       2.5         0       25       1         0       0       0         15       1       0         25       2       0         10       2       0         10       2       0         10       10       5         10       10       10         10       10       10         110       10       10         10       10       10         113       10       10         10       10       10         113       4ttrition Mill with Ceramic Balls       10         113       10       10       10         113       10       10       10         113       10       10       10         114       0       10       10         115       11       0       10         114       0       114       0         115       114       0       114         10       114       0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 0             |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

Test: F17

Purpose:

Procedure:

Feed:

Project: 18559-01

As outlined below.

2kg S Comp -10 mesh

Similar to F9, 1st Cleaner Kinetics on S Comp

| Product               | We     | ight |      |      |      | Assa  | ys, % |      |      |      |      |      | 9    | 6 Distributi | on   |      |      | 1    |          |      |
|-----------------------|--------|------|------|------|------|-------|-------|------|------|------|------|------|------|--------------|------|------|------|------|----------|------|
| FIOUUCI               | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1   | 139.1  | 6.9  | 22.6 | 4.75 | 35.1 | 37.6  | 65.5  | 12.9 | 20.6 | 1.03 | 79.7 | 36.2 | 20.6 | 79.7         | 41.7 | 6.0  | 0.1  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2   | 45.6   | 2.3  | 12.2 | 8.34 | 34.3 | 45.2  | 35.4  | 22.6 | 37.5 | 4.46 | 14.1 | 20.8 | 6.6  | 14.1         | 24.0 | 3.6  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 3   | 54.2   | 2.7  | 2.02 | 4.51 | 36.5 | 57.0  | 5.86  | 11.4 | 79.7 | 3.03 | 2.8  | 13.4 | 8.4  | 2.8          | 14.4 | 9.1  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 4   | 68.6   | 3.4  | 0.36 | 1.58 | 37.9 | 60.2  | 1.04  | 3.07 | 94.9 | 1.02 | 0.6  | 5.9  | 11.0 | 0.6          | 4.9  | 13.7 | 0.1  |      |          |      |
| Cu/Ni 1st Cl Tails    | 164.0  | 8.2  | 0.17 | 0.87 | 29.4 | 69.6  | 0.49  | 1.36 | 74.7 | 23.4 | 0.7  | 7.8  | 20.4 | 0.7          | 5.2  | 25.9 | 2.8  |      |          |      |
| Po 1st Cl Conc 1      | 40.7   | 2.0  | 0.33 | 1.29 | 37.3 | 61.1  | 0.96  | 2.27 | 94.1 | 2.70 | 0.3  | 2.9  | 6.4  | 0.3          | 2.1  | 8.1  | 0.1  |      |          |      |
| Po 1st Cl Conc 2      | 23.1   | 1.1  | 0.36 | 1.17 | 36.7 | 61.8  | 1.04  | 1.96 | 92.7 | 4.30 | 0.2  | 1.5  | 3.6  | 0.2          | 1.1  | 4.5  | 0.1  |      |          |      |
| Po 1st Cl Conc 3      | 20.2   | 1.0  | 0.37 | 1.23 | 36.0 | 62.4  | 1.07  | 2.15 | 90.7 | 6.09 | 0.2  | 1.4  | 3.1  | 0.2          | 1.0  | 3.9  | 0.1  |      |          |      |
| Po 1st Cl Tails       | 95.1   | 4.7  | 0.20 | 0.76 | 28.6 | 70.4  | 0.58  | 1.08 | 72.8 | 25.5 | 0.5  | 4.0  | 11.5 | 0.5          | 2.4  | 14.6 | 1.8  |      |          |      |
| Po Ro Tails           | 1358.4 | 67.6 | 0.03 | 0.08 | 1.48 | 98.4  | 0.08  | 0.11 | 3.7  | 96.1 | 0.9  | 6.1  | 8.5  | 0.9          | 3.4  | 10.6 | 94.8 |      |          |      |
| Head (Calc.)          | 2009.0 | 100  | 1.96 | 0.91 | 11.8 | 85.3  | 5.69  | 2.15 | 23.6 | 68.6 | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)           |        |      | 1.90 | 0.88 | 11.9 | 85.3  | 5.51  | 2.06 | 24.1 | 68.3 |      |      |      |              |      |      |      |      |          |      |
|                       |        |      | -    |      |      |       |       |      |      |      |      |      |      |              |      |      |      | Stag | ge Recov | ery  |
| Combined Products     |        |      |      |      |      |       |       |      |      |      |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1   |        | 6.9  | 22.6 | 4.75 | 35.1 | 37.6  | 65.5  | 12.9 | 20.6 | 1.03 | 79.7 | 36.2 | 20.6 | 79.7         | 41.7 | 6.0  | 0.1  | 81.4 | 46.3     | 10.3 |
| Cu/Ni 1st Cl Conc 1-2 |        | 9.2  | 20.0 | 5.64 | 34.9 | 39.4  | 58.1  | 15.3 | 24.7 | 1.88 | 93.8 | 57.1 | 27.2 | 93.8         | 65.6 | 9.6  | 0.3  | 95.8 | 72.9     | 16.5 |
| Cu/Ni 1st Cl Conc 1-3 |        | 11.9 | 15.9 | 5.38 | 35.3 | 43.4  | 46.2  | 14.4 | 37.2 | 2.14 | 96.5 | 70.5 | 35.6 | 96.5         | 80.0 | 18.8 | 0.4  | 98.6 | 88.8     | 32.1 |
| Cu/Ni 1st Cl Conc 1-4 |        | 15.3 | 12.5 | 4.53 | 35.9 | 47.1  | 36.1  | 11.9 | 50.1 | 1.89 | 97.2 | 76.4 | 46.6 | 97.2         | 84.9 | 32.5 | 0.4  | 99.3 | 94.2     | 55.7 |
| Cu/Ni Ro Conc 1-3     |        | 23.5 | 8.19 | 3.26 | 33.6 | 54.9  | 23.7  | 8.2  | 58.7 | 9.37 | 97.9 | 84.2 | 66.9 | 97.9         | 90.0 | 58.4 | 3.2  |      |          |      |
| Po 1st Cl Conc 1      |        | 2.0  | 0.33 | 1.29 | 37.3 | 61.1  | 0.96  | 2.27 | 94.1 | 2.70 | 0.3  | 2.9  | 6.4  | 0.3          | 2.1  | 8.1  | 0.1  | 27.8 | 32.6     | 26.0 |
| Po 1st Cl Conc 1-2    |        | 3.2  | 0.34 | 1.25 | 37.1 | 61.3  | 0.99  | 2.16 | 93.6 | 3.28 | 0.6  | 4.4  | 10.0 | 0.6          | 3.2  | 12.6 | 0.2  | 45.1 | 48.5     | 40.5 |
| Po 1st Cl Conc 1-3    |        | 4.2  | 0.35 | 1.24 | 36.8 | 61.6  | 1.01  | 2.16 | 92.9 | 3.96 | 0.7  | 5.7  | 13.1 | 0.7          | 4.2  | 16.5 | 0.2  | 60.6 | 63.8     | 53.0 |
| Po Ro Conc 1-3        |        | 8.9  | 0.27 | 0.99 | 32.5 | 66.3  | 0.78  | 1.59 | 82.2 | 15.4 | 1.2  | 9.7  | 24.6 | 1.2          | 6.6  | 31.1 | 2.0  |      |          |      |
| Cu/Ni &Po Ro Conc 1-3 |        | 32.4 | 6.01 | 2.63 | 33.3 | 58.1  | 17.4  | 6.40 | 65.1 | 11.0 | 99.1 | 93.9 | 91.5 | 99.1         | 96.6 | 89.4 | 5.2  |      |          |      |
| Po Ro Feed            |        | 76.5 | 0.05 | 0.19 | 5.09 | 94.7  | 0.16  | 0.28 | 12.8 | 86.7 | 2.1  | 15.8 | 33.1 | 2.1          | 10.0 | 41.6 | 96.8 |      |          |      |

| Purpose:          | Similar to F9, 1st Cleaner Kinetics o                                                                               | n P Comp                                                    |                                        |                                                             |                         |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Procedure:        | As outlined below.                                                                                                  | As outlined below.                                          |                                        |                                                             |                         |  |  |  |  |  |  |
| Feed:             | 2kg P Comp -10 mesh                                                                                                 | Freezer\SEC-11C                                             | Box 115025                             |                                                             |                         |  |  |  |  |  |  |
| Grind:<br>Regrind | 39 minutes at 65% solids in 2 kg Ro<br>12 minutes at 50% solids in 2 kg Ro<br>10 minutes at 50% solids in Attrition | d Mill # 3<br>d Mill for Cu/Ni R.Conc<br>Mill for Po R.Conc | Cu /Ni 1st Cl Tails<br>Po 1st Cl Tails | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 98 μm<br>41 μm<br>42 μm |  |  |  |  |  |  |
| Conditions:       |                                                                                                                     |                                                             |                                        |                                                             |                         |  |  |  |  |  |  |

July 20, 2021

Operator: Deepak

|                          |            |              | Reagents a    | added, grar | ns per tonne |       | -     | Fime, minute | es    |            |         |               |
|--------------------------|------------|--------------|---------------|-------------|--------------|-------|-------|--------------|-------|------------|---------|---------------|
| Stage                    | Lime       | CuSO4        | Na2SO3        | DETA        | PAX          | MIBC* | Grind | Cond.        | Froth | pН         | ORP, mV | -             |
| Grind                    | 550        |              |               |             | 5            |       | 39    |              |       | 8.8        | 167     | 1             |
|                          |            |              |               |             |              |       |       |              |       |            |         |               |
| Cu/Ni Rougher No. 1      | 20         |              |               |             |              | 5     |       | 1            | 1     | 9.0        | 119     | 1             |
| Cu/Ni Rougher No. 2      | 5          |              |               |             | 5            | 0     |       | 1            | 2     | 9.0        | 158     | ]             |
| Cu/Ni Rougher No. 3      | 20         |              |               |             | 5            | 2.5   |       | 1            | 1     | 9.0        | 171     |               |
| Regrind (2kg Rod Mill)   | 150        |              |               | 25          | 1            |       | 12    |              |       | 9.3        | 179     | Target pH 9.5 |
| Cu/Ni 1st Cleaner No.1   | 5          |              |               |             |              | 0     |       | 1            | 2     | 9.5        | 147     | 1             |
| Cu/Ni 1st Cleaner No.2   | 5          |              |               |             | 1            | 0     |       | 1            | 2     | 9.5        | 140     | 1             |
| Cu/Ni 1st Cleaner No.3   | 15         |              |               |             | 2            | 0     |       | 1            | 3     | 9.5        | 134     | 1             |
| Cu/Ni 1st Cleaner No.4   | 15         |              |               |             | 2            | 0     |       | 1            | 3     | 9.5        | 136     |               |
| Po Rougher No. 1         |            |              |               |             | 10           | 5     |       | 1            | 3     | natural pH | 182     | -             |
| Po Rougher No. 2         |            |              |               |             | 10           | 15    |       | 1            | 5     | natural pH | 203     | 1             |
| Po Rougher No. 3         |            |              |               |             | 10           | 10    |       | 1            | 5     | natural pH | 206     |               |
| Po Cleaning on Po Ro Cor | ן<br>1 1-3 | Attrition Mi | II with Ceram | nic Balls   |              |       |       |              |       |            |         | -             |
| Regrind (Attrition Mill) | 175        |              |               | 25          | 1            |       | 10    |              |       | 10.0       | 117     | Target pH 9.0 |
| Po 1st Cleaner No.1      | 0          |              |               | 0           |              | 0     |       | 1            | 2     | 10.0       | 117     | -             |
| Po 1st Cleaner No.2      | 0          |              |               | 0           | 1            | 0     |       | 1            | 2     | 9.3        | 154     | 1             |
| Po 1st Cleaner No.3      | 0          |              |               | 5           | 1+1+1        | 0     |       | 1            | 2     | 9.0        | 172     | 1             |
|                          |            |              |               |             |              |       |       |              |       |            |         | -             |
| Total                    | 410        | 0            | 0             | 55          | 48           | 37.5  |       |              | 33    |            |         | ]             |

\* Add as required.

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

Test: F18

Project: 18559-01

| Due duet                | We       | eight |      |      |      | Assa  | ys, % |      |      |       |      |      | 0    | 6 Distributi | on   |      |      | 1 `  |          |      |
|-------------------------|----------|-------|------|------|------|-------|-------|------|------|-------|------|------|------|--------------|------|------|------|------|----------|------|
| Product                 | g        | %     | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga    | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cl Conc 1     | 43.8     | 2.2   | 13.4 | 10.1 | 35.9 | 40.6  | 38.8  | 27.6 | 34.3 | -0.72 | 70.1 | 27.6 | 7.5  | 70.1         | 32.9 | 3.1  | 0.0  | 1    |          |      |
| Cu/Ni 1st Cl Conc 2     | 15.8     | 0.8   | 5.85 | 14.7 | 33.0 | 46.5  | 17.0  | 40.3 | 35.7 | 6.98  | 11.0 | 14.5 | 2.5  | 11.0         | 17.4 | 1.2  | 0.1  |      |          |      |
| Cu/Ni 1st Cl Conc 3     | 19.1     | 0.9   | 1.64 | 8.81 | 38.7 | 50.9  | 4.75  | 23.4 | 76.1 | -4.30 | 3.7  | 10.5 | 3.5  | 3.7          | 12.2 | 3.0  | -0.1 |      |          |      |
| Cu/Ni 1st Cl Conc 4     | 14.7     | 0.7   | 0.84 | 4.35 | 39.3 | 55.5  | 2.43  | 10.8 | 90.6 | -3.85 | 1.5  | 4.0  | 2.8  | 1.5          | 4.3  | 2.7  | 0.0  |      |          |      |
| Cu/Ni 1st Cl Tails      | 148.2    | 7.4   | 0.30 | 1.31 | 31.3 | 67.1  | 0.87  | 2.54 | 78.3 | 18.3  | 5.3  | 12.1 | 22.2 | 5.3          | 10.3 | 23.7 | 1.8  |      |          |      |
| Po 1st CI Conc 1        | 30.3     | 1.5   | 0.54 | 2.47 | 36.3 | 60.7  | 1.57  | 5.63 | 88.0 | 4.77  | 2.0  | 4.7  | 5.3  | 2.0          | 4.7  | 5.4  | 0.1  |      |          |      |
| Po 1st CI Conc 2        | 20.3     | 1.0   | 0.39 | 1.84 | 35.0 | 62.8  | 1.13  | 3.90 | 86.5 | 8.43  | 0.9  | 2.3  | 3.4  | 0.9          | 2.2  | 3.6  | 0.1  |      |          |      |
| Po 1st CI Conc 3        | 23.8     | 1.2   | 0.20 | 1.31 | 35.2 | 63.3  | 0.58  | 2.40 | 88.8 | 8.18  | 0.6  | 1.9  | 4.0  | 0.6          | 1.6  | 4.3  | 0.1  |      |          |      |
| Po 1st Cl Tails         | 180.4    | 8.9   | 0.05 | 0.73 | 30.3 | 68.9  | 0.15  | 0.93 | 77.8 | 21.2  | 1.1  | 8.2  | 26.1 | 1.1          | 4.6  | 28.6 | 2.6  |      |          |      |
| Po Ro Tails             | 1519.5   | 75.4  | 0.02 | 0.15 | 3.14 | 96.7  | 0.06  | 0.24 | 7.9  | 91.8  | 3.8  | 14.2 | 22.8 | 3.8          | 10.0 | 24.5 | 95.2 |      |          |      |
| Head (Calc.)            | 2015.9   | 100   | 0.42 | 0.80 | 10.4 | 88.4  | 1.20  | 1.82 | 24.3 | 72.7  | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)             |          |       | 0.42 | 0.79 | 10.4 | 88.4  | 1.22  | 1.80 | 24.4 | 72.6  |      |      |      |              |      |      |      |      |          |      |
|                         |          |       |      |      |      |       |       |      |      |       |      |      |      |              |      |      |      | Sta  | ge Recov | ery  |
| Combined Products       |          |       |      |      |      |       |       |      |      |       |      |      |      |              |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc 1     |          | 2.2   | 13.4 | 10.1 | 35.9 | 40.6  | 38.8  | 27.6 | 34.3 | -0.72 | 70.1 | 27.6 | 7.5  | 70.1         | 32.9 | 3.1  | 0.0  | 76.5 | 42.7     | 9.1  |
| Cu/Ni 1st Cl Conc 1-2   |          | 3.0   | 11.4 | 11.3 | 35.1 | 42.2  | 33.0  | 31.0 | 34.7 | 1.32  | 81.1 | 42.1 | 10.0 | 81.1         | 50.3 | 4.2  | 0.1  | 88.5 | 65.3     | 12.6 |
| Cu/Ni 1st Cl Conc 1-3   |          | 3.9   | 9.03 | 10.7 | 36.0 | 44.3  | 26.2  | 29.1 | 44.7 | -0.04 | 84.8 | 52.6 | 13.5 | 84.8         | 62.5 | 7.2  | 0.0  | 92.6 | 81.1     | 21.4 |
| Cu/Ni 1st Cl Conc 1-4   |          | 4.6   | 7.74 | 9.71 | 36.5 | 46.0  | 22.4  | 26.2 | 52.0 | -0.64 | 86.3 | 56.5 | 16.3 | 86.3         | 66.8 | 9.9  | 0.0  | 94.2 | 86.7     | 29.5 |
| Cu/Ni Ro Conc 1-3       |          | 12.0  | 3.18 | 4.56 | 33.3 | 58.9  | 9.2   | 11.7 | 68.1 | 11.0  | 91.6 | 68.6 | 38.4 | 91.6         | 77.1 | 33.6 | 1.8  |      |          |      |
| Po 1st CI Conc 1        |          | 1.5   | 0.54 | 2.47 | 36.3 | 60.7  | 1.57  | 5.63 | 88.0 | 4.77  | 2.0  | 4.7  | 5.3  | 2.0          | 4.7  | 5.4  | 0.1  | 42.8 | 35.9     | 13.0 |
| Po 1st CI Conc 1-2      |          | 2.5   | 0.48 | 2.22 | 35.8 | 61.5  | 1.39  | 4.94 | 87.4 | 6.24  | 2.9  | 7.0  | 8.6  | 2.9          | 6.8  | 9.0  | 0.2  | 63.5 | 52.6     | 21.5 |
| Po 1st Cl Conc 1-3      |          | 3.7   | 0.39 | 1.93 | 35.6 | 62.1  | 1.13  | 4.13 | 87.9 | 6.86  | 3.5  | 8.9  | 12.6 | 3.5          | 8.4  | 13.3 | 0.3  | 75.9 | 64.6     | 31.8 |
| Po Ro Conc 1-3          | 254.8    | 12.6  | 0.15 | 1.08 | 31.8 | 66.9  | 0.44  | 1.87 | 80.7 | 17.0  | 4.6  | 17.1 | 38.8 | 4.6          | 13.0 | 42.0 | 3.0  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro | Conc 1-3 | 24.6  | 1.62 | 2.77 | 32.6 | 63.0  | 4.70  | 6.65 | 74.6 | 14.0  | 96.2 | 85.8 | 77.2 | 96.2         | 90.0 | 75.5 | 4.8  |      |          |      |
| Po Ro Feed              |          | 88.0  | 0.04 | 0.28 | 7.3  | 92.4  | 0.11  | 0.47 | 18.4 | 81.1  | 8.4  | 31.4 | 61.6 | 8.4          | 22.9 | 66.4 | 98.2 |      |          |      |

| Test: F19  | Project: 18559-01       | Date:                         | July 22, 2021                  | Operator:          | Deepak            |         |
|------------|-------------------------|-------------------------------|--------------------------------|--------------------|-------------------|---------|
| Purpose:   | Similar to F16, with po | lish grind on CuSEP, cle      | an Po Ro Conc and Cu/Ni Cl     | tails separately   |                   |         |
| Flocedule. | As outlined below.      |                               |                                |                    |                   |         |
| Feed:      | 2kg SN Comp -10 me      | esh l                         | Freezer\SEC-11C                |                    |                   |         |
| Grind:     | 34 minutes at 65% sol   | ids in 2 kg Rod Mill # 3      |                                |                    | P <sub>80</sub> = |         |
| Regrind    | 12 minutes at 50% sol   | ids in 2 kg Rod Mill for C    | u/Ni R.Conc                    |                    | P <sub>80</sub> = |         |
|            | 17 minutes at 50% sol   | Po 1st CI Tails               | P <sub>80</sub> =              | 30.4 µm            |                   |         |
|            | 6 minutes at 50% solid  | Is in Attrition Mill for Cu/N | li Cl Scav Tails - Cerar Cu/Ni | Tails 1st CI tails | P <sub>80</sub> = | 33.4 µm |

Conditions:

|                                         |          |   | Reagents | added, grai | ms per tonne | 9     |   |       | I ime, minute | es       |            |              |                                  |
|-----------------------------------------|----------|---|----------|-------------|--------------|-------|---|-------|---------------|----------|------------|--------------|----------------------------------|
| Stage                                   | Lime     |   | Na2SO3   | DETA        | PAX          | MIBC* |   | Grind | Cond.         | Froth    | pН         | ORP, mV      |                                  |
| Grind                                   | 625      |   |          |             | 5            |       |   | 34    |               |          | 8.9        | 151          |                                  |
| Cu/Ni Rougher No. 1                     | 25       |   |          |             |              |       |   |       | 1             | 2        | 9.0        | 158          |                                  |
| Cu/Ni Rougher No. 2                     | 25       |   |          |             | 5            | 2.5   |   |       | 1             | 2        | 9.0        | 159          |                                  |
| Cu/Ni Rougher No. 3                     | 15       |   |          |             | 5            |       |   |       | 1             | 2        | 9.0        | 174          | Target 20 wt% ~ 96.5% Cu. 75% Ni |
|                                         |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Regrind (2kg Rod Mill)                  | 225      |   | 0        | 25          | 2            |       |   | 12    |               |          | 9.3        | 172          | Target pH 9.5                    |
| Cu/Ni 1st Cleaner No.1                  | 5        |   |          |             |              |       |   |       | 1             | 2        | 9.5        | 144          |                                  |
| Cu/Ni 1st Cleaner No.2                  | 40       |   |          |             | 3            |       |   |       | 1             | 3        | 9.5        | 143          |                                  |
|                                         |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Cu/Ni Cleaner Scav                      | 30       |   |          |             | 2            |       |   |       | 1             | 3        | 9.5        | 148          |                                  |
|                                         |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Po Rougher No. 1                        | -        |   |          |             | 5            |       |   |       | 1             | 3        | natural pH | 195          | 1                                |
| Po Rougher No. 2                        | -        |   |          |             | 5            | 5     |   |       | 1             | 5        | natural pH | 210          |                                  |
| Po Rougher No. 3                        | -        |   |          |             | 5            | 5     |   |       | 1             | 5        | natural pH | 223          |                                  |
| Po Cleaning on (Po Ro Con 1-3)          | -        |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Regrind on Po Ro Con 1-3 only           |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Regrind (Attrition Mill, Ceramic balls) | 300      |   | 0        |             | 0            |       |   | 17    |               |          | 10.3       | 90           | Target pH 9.0                    |
| Pa dat Classes 1                        |          |   | - °      | 75          |              |       |   |       | 4             | 4        | 10.0       | 30           | Taiget pir 3.0                   |
| Po 1st Cleaner-1                        | 0        |   |          | /5          | 4            |       |   |       | 1             | 1        | 10.3       | 90           |                                  |
| Po 1st Cleaner-2                        |          |   |          |             | 2            |       |   |       | 1             | 1        | 9.5        | 132          |                                  |
|                                         |          |   |          |             | 2            |       |   |       |               | 1        |            |              |                                  |
| Po 2nd Cleaner                          | 10       |   |          | 5           | 1            |       |   |       | 1             | 2        | 9.0        | 161          |                                  |
|                                         |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Cleaning on Cu/Ni Cleaner Scav Tails    | <u> </u> |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Regrind on Cu/Ni Cleaner Scav Tails     |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Regrind (Attrition Mill, Ceramic balls) | 300      |   | 0        |             | 0            |       |   | 6     |               |          | 9.9        | 128          | •                                |
|                                         |          |   |          | 400         | -            |       |   |       |               |          | 0.0        | 120          |                                  |
| Cu/NI Talls 1st Cleaner-1               | 0        |   |          | 100         | 6            |       |   |       | 1             | 2        | 9.9        | 128          |                                  |
| Cu/NI Talls 1st Cleaner-2               |          |   |          | 50          | /            |       |   |       | 1             | 2        | 9.0        | 104          |                                  |
|                                         | <b> </b> |   |          |             |              |       |   |       |               |          |            |              |                                  |
| 0.050                                   | <u> </u> |   |          |             |              |       |   |       |               |          |            |              |                                  |
| CUSEP                                   |          |   |          |             |              |       |   |       |               |          | 44.5       |              |                                  |
| Polish Grind (Peppie mill)              | 500      |   |          |             | 0            |       |   | 5     | 4             |          | 11.5       | 26           |                                  |
|                                         | 0        |   |          |             | 0            |       |   |       | 1             | 2        | 11.5       | 26           |                                  |
| Cu Ro Scav                              | 20       |   |          |             | 1            |       |   |       | 1             | 2        | 11.5       | 26           | -                                |
|                                         | 30       |   |          |             |              |       |   |       |               | 2        | 11.5       | 26           |                                  |
| Cu 1st Cl                               | 05       |   |          |             | 0            |       |   |       | 1             | 3        | 11.5       | 22           |                                  |
|                                         | 95       |   |          |             |              |       |   |       |               | <u> </u> | 11.0       | 23           |                                  |
| Cu 2nd Cl                               | 85       |   |          |             | 0            |       |   |       | 1             | 3        | 11.5       | 28           |                                  |
| Cu 3rd Cl                               | 105      |   | 1        |             | 0            |       |   |       | 1             | 2.5      | 11.5       | 38           |                                  |
|                                         |          |   |          |             |              |       |   |       |               |          |            |              |                                  |
| Total                                   | 1620     | 0 | 0        | 255         | 55           | 12.5  |   |       |               | 45       |            |              |                                  |
| 9                                       |          | • |          |             |              |       | • |       |               |          | * Add a    | as required. |                                  |
| -                                       | 1        |   |          |             |              |       |   |       |               |          |            | -            |                                  |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

198

| Metallurgical Balance                         |               |      |      |      |      |       |       |      |      |       |      |      |      |            |      |      |      | -    |          |      |
|-----------------------------------------------|---------------|------|------|------|------|-------|-------|------|------|-------|------|------|------|------------|------|------|------|------|----------|------|
| Product                                       | Weight<br>a % |      |      |      |      | Assa  | ys, % |      |      |       |      |      | 9    | Distributi | on   |      |      | · ·  |          |      |
| lioudet                                       | g             | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga    | Cu   | Ni   | S    | Ср         | Pn   | Po   | Ga   |      |          |      |
| Cu 3rd Cleaner Conc                           | 32.7          | 1.6  | 33.8 | 0.42 | 35.1 | 30.7  | 98.0  | 1.15 | 1.12 | -0.24 | 54.2 | 0.6  | 3.4  | 54.2       | 0.7  | 0.0  | 0.0  | 1    |          |      |
| Cu 3rd Cleaner Tails                          | 5.6           | 0.3  | 27.3 | 2.19 | 32.7 | 37.8  | 79.1  | 5.97 | 7.88 | 7.02  | 7.5  | 0.5  | 0.5  | 7.5        | 0.6  | 0.1  | 0.0  |      |          |      |
| Cu 2nd Cleaner Tails                          | 5.3           | 0.3  | 15.8 | 6.15 | 30.2 | 47.9  | 45.8  | 16.8 | 22.4 | 15.0  | 4.1  | 1.4  | 0.5  | 4.1        | 1.6  | 0.2  | 0.1  |      |          |      |
| Cu 1st Cleaner Tails                          | 9.7           | 0.5  | 10.7 | 12.5 | 32.6 | 44.2  | 31.0  | 34.3 | 27.0 | 7.60  | 5.1  | 5.0  | 0.9  | 5.1        | 6.0  | 0.3  | 0.1  |      |          |      |
| Cu Ro Scav Conc                               | 17.8          | 0.9  | 13.9 | 11.7 | 34.3 | 40.1  | 40.3  | 32.2 | 24.9 | 2.65  | 12.1 | 8.7  | 1.8  | 12.1       | 10.4 | 0.6  | 0.0  |      |          |      |
| Cu Ro Scav Tails                              | 93.9          | 4.6  | 2.12 | 11.5 | 34.7 | 51.7  | 6.14  | 31.1 | 57.9 | 4.86  | 9.8  | 44.9 | 9.7  | 9.8        | 53.0 | 7.0  | 0.4  |      |          |      |
| Cu/Ni Tails 1st Cleaner Conc                  | 64.7          | 3.2  | 0.13 | 0.77 | 32.9 | 66.2  | 0.38  | 0.96 | 84.3 | 14.4  | 0.4  | 2.1  | 6.3  | 0.4        | 1.1  | 7.0  | 0.8  | 1    |          |      |
| Cu/Ni 1st Cleaner Scav Conc                   | 29.4          | 1.5  | 0.63 | 3.15 | 36.5 | 59.7  | 1.83  | 7.54 | 86.7 | 3.95  | 0.9  | 3.9  | 3.2  | 0.9        | 4.0  | 3.3  | 0.1  |      |          |      |
| Cu/Ni Tails 1st Cleaner Tails                 | 208.1         | 10.3 | 0.18 | 1.36 | 36.3 | 62.2  | 0.52  | 2.50 | 91.7 | 5.31  | 1.8  | 11.8 | 22.4 | 1.8        | 9.4  | 24.6 | 1.0  |      |          |      |
| Po 2nd Cleaner Conc                           | 12.3          | 0.6  | 0.60 | 1.80 | 37.0 | 60.6  | 1.74  | 3.73 | 91.3 | 3.21  | 0.4  | 0.9  | 1.3  | 0.4        | 0.8  | 1.4  | 0.0  | 1    |          |      |
| Po 2nd Cleaner Tails                          | 41.9          | 2.1  | 0.41 | 1.55 | 35.0 | 63.0  | 1.19  | 3.09 | 87.2 | 8.54  | 0.8  | 2.7  | 4.3  | 0.8        | 2.3  | 4.7  | 0.3  |      |          |      |
| Po 1st Cleaner Tails                          | 226.7         | 11.2 | 0.12 | 0.85 | 33.2 | 65.8  | 0.35  | 1.17 | 84.9 | 13.6  | 1.3  | 8.0  | 22.3 | 1.3        | 4.8  | 24.8 | 2.7  |      |          |      |
| Po Ro Tails                                   | 1275.7        | 63.0 | 0.02 | 0.18 | 6.2  | 93.6  | 0.07  | 0.22 | 15.8 | 83.9  | 1.5  | 9.6  | 23.4 | 1.5        | 5.1  | 26.0 | 94.4 |      |          |      |
| Head (Calc.)                                  | 2023.8        | 100  | 1.01 | 1.19 | 16.7 | 81.1  | 2.92  | 2.72 | 38.3 | 56.0  | 100  | 100  | 100  | 100        | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)                                   |               |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5  |      |      |      |            |      |      |      |      |          |      |
|                                               |               |      |      |      |      |       |       |      |      |       |      |      |      |            |      |      |      | Stac | je Recov | ery  |
| Combined Products                             |               |      |      |      |      |       |       |      |      |       |      |      |      |            |      |      |      | Ср   | Pn       | Po   |
| Cu 3rd Cleaner Conc                           | 32.7          | 1.6  | 33.8 | 0.42 | 35.1 | 30.7  | 98.0  | 1.15 | 1.12 | -0.24 | 54.2 | 0.6  | 3.4  | 54.2       | 0.7  | 0.0  | 0.0  | 87.8 | 53.0     | 45.3 |
| Cu 2nd Cleaner Conc                           | 38.3          | 1.9  | 32.8 | 0.68 | 34.7 | 31.7  | 95.2  | 1.86 | 2.11 | 0.82  | 61.7 | 1.1  | 3.9  | 61.7       | 1.3  | 0.1  | 0.0  | 93.8 | 44.4     | 40.4 |
| Cu 1st Cleaner Conc                           | 43.6          | 2.2  | 30.8 | 1.34 | 34.2 | 33.7  | 89.2  | 3.67 | 4.58 | 2.55  | 65.8 | 2.4  | 4.4  | 65.8       | 2.9  | 0.3  | 0.1  | 92.8 | 32.4     | 43.2 |
| Cu Ro Conc                                    | 53.3          | 2.6  | 27.1 | 3.37 | 33.9 | 35.6  | 78.6  | 9.25 | 8.67 | 3.46  | 70.9 | 7.5  | 5.4  | 70.9       | 8.9  | 0.6  | 0.2  | 76.4 | 12.4     | 7.3  |
| Cu Ro & Scav Conc                             | 71.1          | 3.5  | 23.8 | 5.46 | 34.0 | 36.7  | 69.0  | 15.0 | 12.7 | 3.26  | 83.0 | 16.2 | 7.2  | 83.0       | 19.3 | 1.2  | 0.2  | 89.5 | 26.7     | 14.3 |
| Cu/Ni 1st Cl Conc                             | 165.0         | 8.2  | 11.5 | 8.90 | 34.4 | 45.2  | 33.2  | 24.2 | 38.4 | 4.17  | 92.8 | 61.1 | 16.8 | 92.8       | 72.3 | 8.2  | 0.6  | 96.7 | 83.2     | 19.0 |
| Cu/Ni 1st Cl & Scav Conc                      | 194.4         | 11.3 | 8.32 | 6.79 | 29.4 | 55.5  | 24.1  | 18.3 | 38.7 | 3.50  | 93.7 | 64.9 | 20.0 | 93.7       | 76.4 | 11.5 | 0.7  |      |          |      |
| Cu/Ni Tails 1st Cl Conc                       | 64.7          | 3.2  | 0.13 | 0.77 | 32.9 | 66.2  | 0.38  | 0.96 | 84.3 | 14.4  | 0.4  | 2.1  | 6.3  | 0.4        | 1.1  | 7.0  | 0.8  |      |          |      |
| Cu/Ni 1st Cl Scav Tails                       | 272.8         | 14.9 | 0.15 | 1.10 | 32.0 | 66.7  | 0.44  | 1.93 | 81.2 | 6.73  | 2.2  | 13.9 | 28.7 | 2.2        | 10.6 | 31.6 | 1.8  |      |          |      |
| Cu/Ni Ro Conc 1-3                             | 467.2         | 23.1 | 4.19 | 4.05 | 35.2 | 56.6  | 12.1  | 10.3 | 71.5 | 6.08  | 96.0 | 78.8 | 48.7 | 96.0       | 86.9 | 43.1 | 2.5  |      |          |      |
| Po 2nd Cleaner Conc                           | 12.3          | 0.6  | 0.60 | 1.80 | 37.0 | 60.6  | 1.74  | 3.73 | 91.3 | 3.21  | 0.4  | 0.9  | 1.3  | 0.4        | 0.8  | 1.4  | 0.0  | 30.1 | 26.2     | 23.5 |
| Po 1st Cleaner Conc                           | 54.2          | 2.7  | 0.45 | 1.61 | 35.5 | 62.5  | 1.31  | 3.23 | 88.1 | 7.33  | 1.2  | 3.6  | 5.7  | 1.2        | 3.2  | 6.2  | 0.4  | 47.4 | 39.7     | 19.9 |
| Po Ro Conc 1-3                                | 280.9         | 13.9 | 0.18 | 1.00 | 33.6 | 65.2  | 0.53  | 1.57 | 85.5 | 12.4  | 2.5  | 11.6 | 28.0 | 2.5        | 8.0  | 31.0 | 3.1  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3              | 748.1         | 37.0 | 2.68 | 2.90 | 34.6 | 59.8  | 7.78  | 7.00 | 76.8 | 8.44  | 98.5 | 90.4 | 76.6 | 98.5       | 94.9 | 74.0 | 5.6  |      |          |      |
| Ni Conc (Cu 1st Cl tails, Cu Ro Tails)        |               | 5.1  | 2.92 | 11.6 | 34.5 | 51.0  | 8.47  | 31.4 | 55.0 | 5.12  | 14.9 | 50.0 | 10.6 | 14.9       | 59.1 | 7.3  | 0.5  |      |          |      |
| Ni Conc (Cu 1st Cl tails, Cu Ro Tails, Po 2   | nd CI Conc)   | 5.7  | 2.68 | 10.6 | 34.8 | 52.0  | 7.76  | 28.5 | 58.8 | 4.92  | 12.5 | 50.9 | 11.9 | 15.2       | 59.9 | 8.8  | 0.5  |      |          |      |
| Ni Conc (Cu 1st Cl tails, Cu Ro Tails, Po 1st | st CI Conc)   | 7.8  | 2.07 | 8.16 | 34.8 | 54.9  | 6.01  | 21.8 | 66.4 | 5.88  | 16.1 | 53.6 | 16.3 | 16.1       | 62.2 | 13.5 | 0.8  |      |          |      |

| Test: F20              | Project: 18559-01                                                                                                                                                            | Date: July 22, 2021 | Operator: Deepak                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|
| Purpose:<br>Procedure: | Similar to F16, , clean Po Ro Conc and Cu/Ni Cl tails separ<br>As outlined below.                                                                                            | ately               |                                                                                                     |
| Feed:                  | 2kg SN Comp -10 mesh                                                                                                                                                         | Freezer\SEC-11C     |                                                                                                     |
| Grind:<br>Regrind      | 20 minutes at 65% solids in 2 kg Rod Mill # 3<br>12 minutes at 50% solids in 2 kg Rod Mill for Cu/Ni R.Conc<br>3 minutes at 50% solids in Attrition Mill for Po R.Conc - Cen | amic balls          | P <sub>80</sub> =<br>Cu/Ni Tails 1st Cl Tails P <sub>80</sub> = 49.7 μm<br>P <sub>80</sub> = 127 μm |

Conditions:

|                                         |      | Reagent | s added, gra | ms per ton | ne  |       | 1     | Гime, minut | es    |            |              |                                    |
|-----------------------------------------|------|---------|--------------|------------|-----|-------|-------|-------------|-------|------------|--------------|------------------------------------|
| Stage                                   | Lime | CuSO4   | Na2SO3       | DETA       | PAX | MIBC* | Grind | Cond.       | Froth | pН         | ORP, mV      |                                    |
| Grind                                   | 625  |         |              |            | 5   |       | 20    |             |       | 8.9        | 128          |                                    |
| Cu/Ni Rougher No. 1                     | 10   |         |              |            |     | 5     |       | 1           | 2     | 9.0        | 107          |                                    |
| Cu/Ni Rougher No. 2                     | 5    |         |              |            | 5   | 5     |       | 1           | 2     | 9.0        | 145          |                                    |
| Cu/Ni Rougher No. 3                     | 5    |         |              |            | 5   | 5     |       | 1           | 2     | 9.0        | 154          | Target 20 wt% … ~ 96.5% Cu, 75% Ni |
| Rearind (2kg Rod Mill)                  | 225  |         | 0            | 25         | 2   |       | 12    |             |       | 9.4        | 148          | Target pH 9.5                      |
| Cu/Ni 1st Cleaner No.1                  | 15   |         |              | -          |     |       |       | 1           | 9.4   | 9.5        | 138          | raiger pri ele                     |
| Cu/Ni 1st Cleaner No.2                  | 25   |         |              |            | 3   |       |       | 1           | 3     | 9.5        | 130          |                                    |
| Cu/Ni Cleaner Scav                      | 20   |         |              |            | 2   |       |       | 1           | 3     | 9.5        | 135          |                                    |
|                                         |      |         |              |            |     |       |       |             |       |            | 100          |                                    |
| Po Rougher No. 1                        | -    |         |              |            | 5   |       |       | 1           | 3     | natural pH | 176          |                                    |
| Po Rougher No. 2                        | -    |         |              |            | 5   | 5     |       | 1           | 5     | natural pH | 181          |                                    |
| Po Rougher No. 3                        | -    |         |              |            | 5   | 5     |       | 1           | 5     | natural pH | 191          |                                    |
| Po Cleaning on (Po Ro Con 1-3)          |      |         |              |            |     |       |       |             |       |            |              |                                    |
| Regrind on Po Ro Con 1-3 only           |      |         |              |            |     |       |       |             |       |            |              |                                    |
| Regrind (Attrition Mill, Ceramic balls) | 200  |         | 0            |            | 0   |       | 3     |             |       | 10.5       | 58           | Target pH 9.0                      |
| Po 1st Cleaner-1                        | 0    |         |              | 50         | 4   |       |       | 1           | 1     | 10.5       | 58           |                                    |
| Po 1st Cleaner-2                        | 0    |         |              |            | 2   |       |       | 1           | 1     | 10.2       | 85           |                                    |
| Po 1st Cleaner-3                        | 0    |         |              |            | 3   |       |       | 1           | 1     |            |              |                                    |
| Po 2nd Cleaner                          | 0    |         |              | 5          | 1   |       |       | 1           | 3     | 9.0        | 148          |                                    |
| Cleaning on Cu/Ni Cleaner Scav Tail     | s    |         |              |            |     |       |       |             |       |            |              |                                    |
| Cu/Ni Tails 1st Cleaner-1               | 20   |         |              | 50         | 2   |       |       | 1           | 2     | 9.0        | 128          |                                    |
| Cu/Ni Tails 1st Cleaner-2               | 0    |         |              | 30         | 2   |       |       | 1           | 2     | 9.0        | 145          | 1                                  |
| Cu/Ni Tails 1st Cleaner-3               | 5    |         |              |            | 2   |       |       | 1           | 2     | 9.0        | 158          |                                    |
| Cu/Ni Tails 2nd Cleaner                 | 5    |         |              | 5          | 1   |       |       | 1           | 2     | 9.0        | 137          | •                                  |
|                                         |      |         |              |            |     |       |       |             |       |            |              |                                    |
| Total                                   | 535  | 0       | 0            | 135        | 49  | 25    |       | 17          | 48.4  |            |              | ]                                  |
|                                         |      |         |              |            |     |       |       | _           |       | * Add a    | as required. |                                    |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Desiduat                         | Weight |      |      |      |      | Assa  | ys, % |      |      |       |      |      | 9    | 6 Distributio | on   |      |      | 1 .  |          |      |
|----------------------------------|--------|------|------|------|------|-------|-------|------|------|-------|------|------|------|---------------|------|------|------|------|----------|------|
| Product                          | g      | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Ga    | Cu   | Ni   | S    | Ср            | Pn   | Po   | Ga   |      |          |      |
| Cu/Ni 1st Cleaner Conc           | 122.1  | 6.1  | 15.0 | 9.58 | 35.4 | 40.0  | 43.5  | 26.2 | 30.0 | 0.36  | 90.0 | 50.3 | 12.7 | 90.0          | 60.6 | 4.6  | 0.0  | 1    |          |      |
| Cu/Ni 1st Cleaner Scav Conc      | 17.4   | 0.9  | 2.98 | 8.24 | 36.2 | 52.6  | 8.64  | 22.0 | 67.4 | 2.05  | 2.5  | 6.2  | 1.8  | 2.5           | 7.2  | 1.5  | 0.0  |      |          |      |
| Cu/Ni Tails 2nd Cleaner Conc     | 20.5   | 1.0  | 1.42 | 5.01 | 37.8 | 55.8  | 4.12  | 12.8 | 83.5 | -0.4  | 1.4  | 4.4  | 2.3  | 1.4           | 5.0  | 2.2  | 0.0  |      |          |      |
| Cu/Ni Tails 2nd Cleaner Tails    | 15.5   | 0.8  | 0.61 | 2.20 | 36.5 | 60.7  | 1.77  | 4.87 | 89.0 | 4.34  | 0.5  | 1.5  | 1.7  | 0.5           | 1.4  | 1.8  | 0.1  |      |          |      |
| Cu/Ni Tails 1st Cleaner Tails    | 223.3  | 11.1 | 0.16 | 0.92 | 34.8 | 64.1  | 0.46  | 1.31 | 88.8 | 9.38  | 1.8  | 8.8  | 22.8 | 1.8           | 5.6  | 25.2 | 1.9  |      |          |      |
| Po 2nd Cleaner Conc              | 60.3   | 3.0  | 0.32 | 1.84 | 38.5 | 59.3  | 0.93  | 3.78 | 95.9 | -0.62 | 0.9  | 4.8  | 6.8  | 0.9           | 4.3  | 7.3  | 0.0  | 1    |          |      |
| Po 2nd Cleaner Tails             | 47.7   | 2.4  | 0.18 | 1.26 | 37.7 | 60.9  | 0.52  | 2.17 | 95.6 | 1.72  | 0.4  | 2.6  | 5.3  | 0.4           | 2.0  | 5.8  | 0.1  |      |          |      |
| Po 1st Cleaner Tails             | 129.3  | 6.4  | 0.14 | 1.07 | 34.0 | 64.8  | 0.41  | 1.76 | 86.4 | 11.4  | 0.9  | 6.0  | 12.9 | 0.9           | 4.3  | 14.2 | 1.3  |      |          |      |
| Po Ro Tails                      | 1379.2 | 68.4 | 0.02 | 0.26 | 8.4  | 91.3  | 0.06  | 0.37 | 21.4 | 78.1  | 1.5  | 15.4 | 33.9 | 1.5           | 9.6  | 37.5 | 96.6 |      |          |      |
| Head (Calc.)                     | 2015.3 | 100  | 1.01 | 1.15 | 16.9 | 80.9  | 2.93  | 2.62 | 39.1 | 55.3  | 100  | 100  | 100  | 100           | 100  | 100  | 100  | 1    |          |      |
| Head (Dir.)                      |        |      | 1.07 | 1.17 | 16.5 | 81.3  | 3.10  | 2.69 | 37.7 | 56.5  |      |      |      |               |      |      |      |      |          |      |
|                                  |        |      |      |      |      |       |       |      |      |       |      |      |      |               |      |      |      | Stag | je Recov | ery  |
| Combined Products                |        |      |      |      |      |       |       |      |      |       |      |      |      |               |      |      |      | Ср   | Pn       | Po   |
| Cu/Ni 1st Cl Conc                |        | 6.1  | 15.0 | 9.58 | 35.4 | 40.0  | 43.5  | 26.2 | 30.0 | 0.36  | 90.0 | 50.3 | 12.7 | 90.0          | 60.6 | 4.6  | 0.0  | 93.6 | 76.0     | 13.2 |
| Cu/Ni 1st Cl & Scav Conc         |        | 6.9  | 13.5 | 9.41 | 35.5 | 41.6  | 39.1  | 25.7 | 34.6 | 0.57  | 92.6 | 56.5 | 14.5 | 92.6          | 67.8 | 6.1  | 0.1  | 96.2 | 85.0     | 17.4 |
| Cu/Ni Tails 2nd Cl Conc          |        | 1.0  | 1.42 | 5.01 | 37.8 | 55.8  | 4.12  | 12.8 | 83.5 | -0.38 | 1.4  | 4.4  | 2.3  | 1.4           | 5.0  | 2.2  | 0.0  | 75.5 | 77.6     | 55.4 |
| Cu/Ni Tails 1st Cl Conc          |        | 1.8  | 1.07 | 3.80 | 37.2 | 57.9  | 3.11  | 9.36 | 85.9 | 1.65  | 1.9  | 5.9  | 3.9  | 1.9           | 6.4  | 3.9  | 0.1  | 51.9 | 53.4     | 13.5 |
| Cu/Ni 1st CI Tails               |        | 12.9 | 0.29 | 1.32 | 35.1 | 63.3  | 0.83  | 2.43 | 88.4 | 8.31  | 3.7  | 14.7 | 26.7 | 3.7           | 11.9 | 29.1 | 1.9  |      |          |      |
| Cu/Ni Ro Conc 1-3                |        | 19.8 | 4.91 | 4.15 | 35.3 | 55.7  | 14.2  | 10.6 | 69.6 | 5.60  | 96.2 | 71.2 | 41.2 | 96.2          | 79.8 | 35.2 | 2.0  |      |          |      |
| Po 2nd Cleaner Conc              |        | 3.0  | 0.32 | 1.84 | 38.5 | 59.3  | 0.93  | 3.78 | 95.9 | -0.62 | 0.9  | 4.8  | 6.8  | 0.9           | 4.3  | 7.3  | 0.0  | 69.2 | 68.8     | 55.9 |
| Po 1st Cleaner Conc              |        | 5.4  | 0.26 | 1.58 | 38.1 | 60.0  | 0.75  | 3.07 | 95.8 | 0.41  | 1.4  | 7.4  | 12.1 | 1.4           | 6.3  | 13.1 | 0.0  | 60.6 | 59.2     | 48.1 |
| Po Ro Conc 1-3                   |        | 11.8 | 0.19 | 1.30 | 35.9 | 62.6  | 0.56  | 2.36 | 90.7 | 6.40  | 2.3  | 13.3 | 24.9 | 2.3           | 10.6 | 27.3 | 1.4  |      |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3 |        | 31.6 | 3.15 | 3.09 | 35.5 | 58.3  | 9.13  | 7.50 | 77.5 | 5.90  | 98.5 | 84.6 | 66.1 | 98.5          | 90.4 | 62.5 | 3.4  |      |          |      |

| Test: F21                         | Project:                                           | 18559-01                                                         |                                                                  | Date:                                                     | July 27                   | 7, 2021    |                                   | Operator:                                    | Deepak                                                                           |                    |            |              |                                    |
|-----------------------------------|----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|---------------------------|------------|-----------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|--------------------|------------|--------------|------------------------------------|
| Purpose:<br>Procedure:            | Similar to I<br>As outlined                        | F16/F19, Usii<br>d below.                                        | ng S Comp                                                        |                                                           |                           |            |                                   |                                              |                                                                                  |                    |            |              |                                    |
| Feed:                             | 2kg S Cor                                          | mp -10 mesh                                                      |                                                                  |                                                           | Freezer\S                 | EC-12C     | Box 1150                          | 29                                           |                                                                                  |                    |            |              |                                    |
| Grind:<br>Regrind                 | 22 minutes<br>12 minutes<br>minutes a<br>minutes a | s at 65% solid<br>s at 50% solid<br>t 50% solids<br>t 50% solids | ds in 2 kg Ri<br>ds in 2 kg Ri<br>in Mill for P<br>in Mill for C | od Mill # 3<br>od Mill for C<br>o R.Conc -<br>u/Ni Cl Sca | cu/Ni R.Conc<br>v Tails - |            | Cu/Ni<br>P o 1st C<br>Cu/Ni Tails | 1st CI Tails<br>I Scav Tails<br>1st CI Tails | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 40.8 µm<br>48.7 um |            |              |                                    |
| Conditions:                       |                                                    |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              | - 60                                                                             |                    |            |              |                                    |
| Stage                             | Lime                                               | 1                                                                | Reagents                                                         | added, gran                                               | ns per tonne              | MIRC*      | 1                                 | Grind                                        | ime, minute                                                                      | s<br>Eroth         |            | 000          |                                    |
| Grind                             | 350                                                |                                                                  | 1402000                                                          | DEIA                                                      | 5                         | NIBO       | -                                 | 22                                           | oona.                                                                            | TTOUT              | 9.0        | 42           |                                    |
|                                   | 000                                                |                                                                  |                                                                  |                                                           | , v                       |            |                                   | ~~~                                          |                                                                                  |                    | 0.0        | 42           |                                    |
| Cu/Ni Rougher No. 1               | 0                                                  |                                                                  |                                                                  |                                                           | 5                         | 0          |                                   |                                              | 1                                                                                | 1                  | 9.0        | 42           |                                    |
| Cu/Ni Rougher No. 3               | 15                                                 |                                                                  |                                                                  |                                                           | 7.5                       | 2.5        |                                   |                                              | 1                                                                                | 2.5                | 9.0        | 114          | Target 23.5 wt% ~ 98% Cu. 85% Ni   |
|                                   |                                                    |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              |                                                                                  |                    |            | 100          | 1 alger 20.0 wr/s 00/0 00, 00/0 14 |
| Regrind (2kg Rod Mill)            | 225                                                |                                                                  | 0                                                                | 25                                                        | 2                         |            |                                   | 12                                           |                                                                                  |                    | 9.4        | 138          | Target pH 9.5                      |
| Cu/Ni 1st Cleaner No.1            | 5                                                  |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              | 1                                                                                | 2                  | 9.5        | 90           |                                    |
| Cu/Ni 1st Cleaner No.2            | 15                                                 |                                                                  |                                                                  |                                                           | 2                         |            |                                   |                                              | 1                                                                                | 3                  | 9.5        | 131          |                                    |
| Cu/Ni Cleaner Scav                | 30                                                 |                                                                  |                                                                  |                                                           | 2                         |            |                                   |                                              | 1                                                                                | 3                  | 9.5        | 131          |                                    |
| Cu/Ni 2nd Cleaner                 | 45                                                 |                                                                  |                                                                  |                                                           | 1                         | 0          |                                   |                                              | 1                                                                                | 4                  | 9.5        | 109          |                                    |
|                                   | 45                                                 |                                                                  |                                                                  |                                                           |                           | 0          |                                   |                                              |                                                                                  | 4                  | 3.5        | 100          |                                    |
| De Deurshee No. 4                 |                                                    |                                                                  |                                                                  |                                                           | 10                        |            | _                                 |                                              | 4                                                                                | 2                  |            |              |                                    |
| Po Rougher No. 1                  | -                                                  |                                                                  |                                                                  |                                                           | 10                        | 5          |                                   |                                              | 1                                                                                | 5                  | natural pH | 185          |                                    |
| Po Rougher No. 3                  |                                                    |                                                                  |                                                                  |                                                           | 10                        | 10         |                                   |                                              | 1                                                                                | 5                  | natural pH | 100          |                                    |
| Po Cleaning on (Po Ro Con 1-3 )   |                                                    |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              |                                                                                  |                    |            | 100          |                                    |
| Regrind (Attrition Mill)          | 150                                                |                                                                  |                                                                  | 25                                                        |                           |            |                                   | 10                                           |                                                                                  |                    | 9.0        | 95           | Target pH 9.0                      |
| Po 1st Cleaner-1                  | 0                                                  |                                                                  |                                                                  |                                                           | 1+1                       | 0          |                                   |                                              | 1                                                                                | 2                  | 9.0        | 95           |                                    |
| Po 1st Cleaner-2                  | 10                                                 |                                                                  |                                                                  |                                                           | 2                         |            |                                   |                                              | 1                                                                                | 2                  | 9.0        | 112          |                                    |
| Po 2nd Cleaner                    | 5                                                  |                                                                  |                                                                  | 5                                                         | 1+1                       |            |                                   |                                              | 1                                                                                | 2                  | 9.0        | 98           |                                    |
| Po 3rd Cleaner                    | 5                                                  |                                                                  |                                                                  | 0                                                         | 3+1                       |            |                                   |                                              | 1                                                                                | 1+1                | 9.0        | 110          |                                    |
| Cleaning on Cu/Ni Cleaner Scav Ta | ils                                                |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              |                                                                                  |                    |            |              |                                    |
|                                   |                                                    |                                                                  |                                                                  |                                                           | <u> </u>                  |            |                                   | <u> </u>                                     |                                                                                  |                    |            |              |                                    |
| Cu/Ni Tails 1st Cleaner-1         | 10                                                 |                                                                  |                                                                  | 0                                                         | 6                         |            |                                   |                                              | 1                                                                                | 2                  | 9.0        | 152          |                                    |
| Cu/Ni Tails 1st Cleaner-2         | 40                                                 |                                                                  |                                                                  | 0                                                         | 6                         |            |                                   |                                              | 1                                                                                | 2                  | 9.0        | 127          |                                    |
| CuSEP                             |                                                    |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              |                                                                                  |                    |            |              | 1                                  |
| Polish Grind (Pepple mill)        | 900                                                |                                                                  |                                                                  |                                                           |                           |            |                                   | 7                                            |                                                                                  |                    | 11.6       | 18           | 1                                  |
| Cu Ro 1                           | 0                                                  |                                                                  |                                                                  |                                                           | 0                         |            |                                   |                                              | 1                                                                                | 2                  | 11.6       | 18           |                                    |
| Cu Ro 2                           | 0                                                  |                                                                  |                                                                  |                                                           | 1                         |            |                                   |                                              | 1                                                                                | 2                  | 11.7       | -2           | 4                                  |
| Cu Ro Scav                        | 0                                                  |                                                                  |                                                                  |                                                           |                           |            |                                   |                                              | 1                                                                                | 2                  | 11.6       | 10           |                                    |
| Cu 1st Cl                         | 0                                                  |                                                                  |                                                                  |                                                           | 0                         |            |                                   |                                              | 1                                                                                | 3                  | 11.5       | 22           |                                    |
| Cu 2nd Cl                         | 85                                                 |                                                                  |                                                                  |                                                           | 0                         |            |                                   |                                              | 1                                                                                | 3                  | 11.5       | 12           | 1                                  |
| Cu 3rd Cl                         | 110                                                |                                                                  |                                                                  |                                                           | 0                         |            |                                   |                                              | 1                                                                                | 2.5                | 11.5       | 13           | 1                                  |
| Total                             | 1460                                               | 0                                                                | 0                                                                | 55                                                        | 65.5                      | 32.5       |                                   |                                              |                                                                                  | 49.5               |            |              |                                    |
| Stage                             | Bourbay /                                          |                                                                  | Do Dovor                                                         | -                                                         | Cu/NE 4-4/2               | nd Class   | Do 1-+ 0 0                        |                                              | . –                                                                              |                    | * Add a    | as required. |                                    |
| Siage                             | Kougner/S                                          | cavenger                                                         | Po Roughe                                                        | 91                                                        | 10u/INI 1st/2i            | nu Cleaner | PO 1St & 2                        | na Cl                                        |                                                                                  |                    |            |              |                                    |

| $\sim$ | $\sim$ | $\mathbf{c}$ |
|--------|--------|--------------|
| 2      | υ      | 2            |

n/

m٤

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Bredvet                              | We      | ight |      |      |      | Assa  | ys,% |      |      |      |      |      | 9    | Distributio | n    |      |      | ·    |           |      |
|--------------------------------------|---------|------|------|------|------|-------|------|------|------|------|------|------|------|-------------|------|------|------|------|-----------|------|
| Product                              | g       | %    | Cu   | Ni   | S    | Other | Ср   | Pn   | Po   | Ga   | Cu   | Ni   | S    | Ср          | Pn   | Po   | Ga   |      |           |      |
| Cu 3rd Cleaner Conc                  | 64.4    | 3.2  | 33.0 | 0.22 | 35.0 | 31.8  | 95.7 | 0.56 | 3.47 | 0.31 | 55.5 | 0.8  | 9.7  | 55.5        | 0.9  | 0.5  | 0.0  | 1    |           |      |
| Cu 3rd Cleaner Tails                 | 7.0     | 0.3  | 26.5 | 0.72 | 34.2 | 38.6  | 76.8 | 1.75 | 17.5 | 3.94 | 4.8  | 0.3  | 1.0  | 4.8         | 0.3  | 0.3  | 0.0  |      |           |      |
| Cu 2nd Cleaner Tails                 | 6.8     | 0.3  | 23.8 | 1.70 | 34.1 | 40.4  | 69.0 | 4.41 | 22.1 | 4.53 | 4.2  | 0.7  | 1.0  | 4.2         | 0.7  | 0.3  | 0.0  |      |           |      |
| Cu 1st Cleaner Tails                 | 14.5    | 0.7  | 17.4 | 4.71 | 34.1 | 43.8  | 50.4 | 12.6 | 31.9 | 5.04 | 6.6  | 3.9  | 2.1  | 6.6         | 4.4  | 1.0  | 0.1  |      |           |      |
| Cu Ro Scav Conc                      | 20.6    | 1.0  | 17.5 | 2.99 | 34.3 | 45.2  | 50.7 | 7.80 | 36.3 | 5.18 | 9.4  | 3.5  | 3.0  | 9.4         | 3.9  | 1.6  | 0.1  |      |           |      |
| Cu Ro Scav Tails                     | 75.8    | 3.8  | 7.48 | 12.5 | 34.1 | 45.9  | 21.7 | 34.2 | 39.6 | 4.58 | 14.8 | 53.5 | 11.1 | 14.8        | 62.2 | 6.4  | 0.3  |      |           |      |
| Cu/Ni 2nd Cl Tails                   | 43.4    | 2.2  | 0.78 | 2.68 | 35.6 | 60.9  | 2.26 | 6.26 | 85.0 | 6.43 | 0.9  | 6.6  | 6.6  | 0.9         | 6.5  | 7.9  | 0.2  |      |           |      |
| Cu/Ni 1st Cleaner Scav Conc          | 61.4    | 3.1  | 0.61 | 2.15 | 37.4 | 59.8  | 1.77 | 4.70 | 91.5 | 2.03 | 1.0  | 7.5  | 9.8  | 1.0         | 6.9  | 12.0 | 0.1  |      |           |      |
| Cu/Ni Tails 1st Cleaner Conc         | 95.7    | 4.8  | 0.19 | 1.10 | 37.7 | 61.0  | 0.55 | 1.72 | 95.9 | 1.78 | 0.5  | 5.9  | 15.5 | 0.5         | 4.0  | 19.6 | 0.1  | 1    |           |      |
| Cu/Ni Tails 1st Cleaner Tails        | 111.7   | 5.6  | 0.13 | 0.60 | 23.3 | 76.0  | 0.38 | 0.81 | 59.5 | 39.3 | 0.4  | 3.8  | 11.2 | 0.4         | 2.2  | 14.2 | 3.2  |      |           |      |
| Po 3rd Cleaner Conc                  | 10.9    | 0.5  | 0.23 | 1.51 | 38.8 | 59.5  | 0.67 | 2.84 | 97.7 | -1.2 | 0.1  | 0.9  | 1.8  | 0.1         | 0.7  | 2.3  | 0.0  | 1    |           |      |
| Po 3rd Cleaner Tails                 | 4.6     | 0.2  | 0.29 | 1.25 | 38.2 | 60.3  | 0.84 | 2.13 | 96.6 | 0.40 | 0.0  | 0.3  | 0.8  | 0.0         | 0.2  | 0.9  | 0.0  |      |           |      |
| Po 2nd Cleaner Tails                 | 16.5    | 0.8  | 0.44 | 1.21 | 33.9 | 64.5  | 1.28 | 2.17 | 85.0 | 11.5 | 0.2  | 1.1  | 2.4  | 0.2         | 0.9  | 3.0  | 0.1  |      |           |      |
| Po 1st Cleaner Tails                 | 109.2   | 5.4  | 0.21 | 0.82 | 30.8 | 68.2  | 0.61 | 1.17 | 78.4 | 19.8 | 0.6  | 5.1  | 14.4 | 0.6         | 3.1  | 18.2 | 1.6  |      |           |      |
| Po Ro Tails                          | 1361.4  | 67.9 | 0.03 | 0.08 | 1.65 | 98.2  | 0.08 | 0.10 | 4.1  | 95.7 | 1.0  | 6.2  | 9.6  | 1.0         | 3.1  | 12.0 | 94.3 |      |           |      |
| Head (Calc.)                         | 2003.9  | 100  | 1.91 | 0.88 | 11.6 | 85.6  | 5.54 | 2.08 | 23.4 | 69.0 | 100  | 100  | 100  | 100         | 100  | 100  | 100  |      |           |      |
| Head (Dir.)                          |         |      | 1.90 | 0.88 | 11.9 | 85.3  | 5.51 | 2.06 | 24.1 | 68.3 |      |      |      |             |      |      |      |      |           |      |
|                                      |         |      |      |      |      |       |      |      |      |      |      |      |      |             |      |      |      | Stag | je Recovo | ery  |
| Combined Products                    |         |      |      |      |      |       |      |      |      |      |      |      |      |             |      |      |      | Ср   | Pn        | Po   |
| Cu 3rd Cleaner Conc                  |         | 3.2  | 33.0 | 0.22 | 35.0 | 31.8  | 95.7 | 0.56 | 3.47 | 0.31 | 55.5 | 0.8  | 9.7  | 55.5        | 0.9  | 0.5  | 0.0  | 92.0 | 74.7      | 64.6 |
| Cu 2nd Cleaner Conc                  |         | 3.6  | 32.4 | 0.27 | 34.9 | 32.4  | 93.8 | 0.68 | 4.85 | 0.67 | 60.4 | 1.1  | 10.7 | 60.4        | 1.2  | 0.7  | 0.0  | 93.5 | 61.8      | 69.7 |
| Cu 1st Cleaner Conc                  |         | 3.9  | 31.6 | 0.39 | 34.9 | 33.1  | 91.6 | 1.00 | 6.34 | 1.01 | 64.6 | 1.7  | 11.7 | 64.6        | 1.9  | 1.1  | 0.1  | 90.7 | 30.0      | 51.8 |
| Cu Ro Conc                           |         | 4.6  | 29.4 | 1.07 | 34.7 | 34.8  | 85.2 | 2.82 | 10.3 | 1.64 | 71.2 | 5.6  | 13.8 | 71.2        | 6.3  | 2.0  | 0.1  | 74.6 | 8.7       | 20.4 |
| Cu Ro & Scav Conc                    |         | 5.7  | 27.2 | 1.42 | 34.7 | 36.7  | 78.9 | 3.73 | 15.1 | 2.28 | 80.6 | 9.1  | 16.8 | 80.6        | 10.1 | 3.6  | 0.2  | 84.5 | 14.0      | 36.3 |
| Cu/Ni 2nd Cl Conc                    |         | 9.4  | 19.3 | 5.86 | 34.4 | 40.4  | 56.0 | 15.9 | 24.9 | 3.20 | 95.4 | 62.6 | 27.9 | 95.4        | 72.4 | 10.0 | 0.4  | 99.1 | 91.7      | 56.0 |
| Cu/Ni 1st Cl Conc                    |         | 11.6 | 15.9 | 5.27 | 34.7 | 44.2  | 46.0 | 14.1 | 36.1 | 3.80 | 96.3 | 69.2 | 34.5 | 96.3        | 78.9 | 17.9 | 0.6  | 98.1 | 85.8      | 28.1 |
| Cu/Ni 1st Cl & Scav Conc             |         | 14.7 | 12.7 | 4.62 | 35.2 | 47.5  | 36.7 | 12.2 | 47.7 | 3.43 | 97.3 | 76.7 | 44.4 | 97.3        | 85.8 | 29.9 | 0.7  | 99.1 | 93.3      | 47.0 |
| Cu/Ni 1st Cl & Scav Conc & Tails 1st | CI Conc | 19.4 | 9.60 | 3.75 | 35.8 | 50.8  | 27.8 | 9.59 | 59.5 | 3.03 | 97.8 | 82.6 | 59.8 | 97.8        | 89.8 | 49.4 | 0.9  | 99.6 | 97.6      | 77.7 |
| Cu/Ni Ro Conc 1-3                    |         | 25.0 | 7.49 | 3.05 | 33.0 | 56.4  | 21.7 | 7.64 | 59.5 | 11.1 | 98.2 | 86.4 | 71.0 | 98.2        | 92.0 | 63.6 | 4.0  |      |           |      |
| Po 3rd Cleaner Conc                  |         | 0.5  | 0.23 | 1.51 | 38.8 | 59.5  | 0.67 | 2.84 | 97.7 | -1.2 | 0.1  | 0.9  | 1.8  | 0.1         | 0.7  | 2.3  | 0.0  | 65.3 | 75.9      | 70.6 |
| Po 2nd Cleaner Conc                  |         | 0.8  | 0.25 | 1.43 | 38.6 | 59.7  | 0.72 | 2.63 | 97.4 | -0.8 | 0.1  | 1.3  | 2.6  | 0.1         | 1.0  | 3.2  | 0.0  | 11.3 | 19.9      | 13.2 |
| Po 1st Cleaner Conc                  |         | 1.6  | 0.35 | 1.32 | 36.2 | 62.1  | 1.01 | 2.39 | 91.0 | 5.6  | 0.3  | 2.4  | 5.0  | 0.3         | 1.8  | 6.2  | 0.1  | 32.6 | 37.4      | 25.4 |
| Po Ro Conc 1-3                       |         | 7.0  | 0.24 | 0.93 | 32.0 | 66.8  | 0.70 | 1.45 | 81.3 | 16.6 | 0.9  | 7.4  | 19.4 | 0.9         | 4.9  | 24.5 | 1.7  |      |           |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3     |         | 32.1 | 5.90 | 2.58 | 32.8 | 58.7  | 17.1 | 6.28 | 64.3 | 12.3 | 99.0 | 93.8 | 90.4 | 99.0        | 96.9 | 88.0 | 5.7  |      |           |      |

| Test: F22                          | Project:     | 18559-01      |               | Date:         | July 2      | 7, 2021    |            | Operator:    | Deepak            |         |            |              |               |
|------------------------------------|--------------|---------------|---------------|---------------|-------------|------------|------------|--------------|-------------------|---------|------------|--------------|---------------|
| Purpose:                           | Similar to I | =16/F19, Usi  | ng P Comp     |               |             |            |            |              |                   |         |            |              |               |
| Procedure:                         | As outlined  | d below.      |               |               |             |            |            |              |                   |         |            |              |               |
| Feed:                              | 2kg P Cor    | np -10 mesł   | 1<br>1        |               | Freezer\SI  | EC-11C     | Box 1150   | 25           |                   |         |            |              |               |
| Grind:                             | 22 minutes   | s at 65% soli | ds in 2 kg R  | od Mill # 3   |             |            |            |              | P <sub>80</sub> = | 147 µm  |            |              |               |
| Regrind                            | 12 minutes   | s at 50% soli | ds in 2 kg R  | od Mill for C | u/Ni R.Conc |            | Cu/Ni      | 1st CI Tails | P <sub>80</sub> = | 37.8 µm |            |              |               |
|                                    | minutes a    | t 50% solids  | in Mill for P | o R.Conc -    |             |            | P o 1st C  | I Scav Tails | P <sub>80</sub> = | 40.4 µm |            |              |               |
|                                    | minutes a    | t 50% solids  | in Mill for C | u/Ni Cl Sca   | v Tails -   |            |            |              | P <sub>80</sub> = |         |            |              |               |
| Conditions:                        | 1            |               | Boogonto      | addad gran    | a nor tonno |            |            | 1 7          | Timo, minuto      |         | 1          |              | 1             |
| Stage                              | Lime         | 1             | l             |               |             | MIBC*      | 1          | Grind        | Cond.             | Froth   | рH         | ORP mV       |               |
| Grind                              | 550          |               |               |               | 5           |            |            | 20           |                   |         | 8.9        | 145          |               |
|                                    |              |               |               |               | -           |            |            |              |                   |         |            | 140          |               |
| Cu/Ni Rougher No. 1                | 20           |               |               |               | 5           | 5          |            |              | 1                 | 1       | 9.0        | 108          | -             |
| Cu/Ni Rougher No. 2                | 15           |               |               |               | 5           | 2.5        |            |              | 1                 | 2       | 9.0        | 128          | -             |
| Cu/Ni Rougher No. 3                | 20           |               |               |               | 5           | 5          |            |              | 1                 | 2       | 9.0        | 142          |               |
| Regrind (2kg Rod Mill)             | 150          |               |               | 25            | 3           |            |            | 12           |                   |         | 9.3        | 74           | Target pH 9.5 |
| Cu/Ni 1st Cleaner No.1             | 5            |               |               |               |             |            |            |              | 1                 | 2       | 9.5        | 44           |               |
| Cu/Ni 1st Cleaner No.2             | 5            |               |               |               | 3           |            |            |              | 1                 | 3       | 9.5        | 120          | ]             |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              |               |
| Cu/Ni Cleaner Scav                 | 35           |               |               |               | 2           |            |            |              | 1                 | 3       | 9.5        | 123          | -             |
| Cu/Ni 2nd Cleaner                  | 5            |               |               |               | 0           | 0          |            |              | 1                 | 4       | 9.5        | 120          | 1             |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              |               |
| Po Bougher No. 1                   | · .          |               |               |               | 10          | 5          |            |              | 1                 | 3       | natural nH | 152          |               |
| Po Rougher No. 2                   |              |               |               |               | 10          | 10         |            |              | 1                 | 5       | natural pH | 153          | -             |
| Po Rougher No. 3                   | -            |               |               |               | 10          | 10         |            |              | 1                 | 5       | natural pH | 171          |               |
| Po Cleaning on (Po Ro Con 1-3)     |              |               |               |               |             |            |            |              |                   |         |            |              |               |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              |               |
| Regrind (Pepple Mill)              | 150          |               |               | 25            |             |            |            | 10           |                   |         | 9.6        | 118          | Target pH 9.0 |
| Po 1st Cleaner-1                   | 0            |               |               |               | 1+1         | 0          |            |              | 1                 | 2       | 9.0        | 118          |               |
| Po 1st Cleaner-2                   | 5            |               |               |               | 2           |            |            |              | 1                 | 2       | 9.5        | 151          | 1             |
| Po 1st Cleaner Scavenger           |              |               |               | 0             | 10          | 0          |            |              | 1                 | 2       |            |              |               |
|                                    | Ŭ            |               |               | 0             | 10          | Ŭ          |            |              |                   | 2       |            |              |               |
| Po 2nd Cleaner                     | 5            |               |               | 0             | 2           |            |            |              | 1                 | 2+1     | 9.0        | 139          |               |
| Po 3rd Cleaner                     | 15           |               |               | 0             | 0           |            |            |              | 1                 | 2       | 9.0        | 140          |               |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              |               |
| TELOSNING ON LEUNILEIDSNOF-SCOV-12 | me           | <u> </u>      |               |               |             |            |            |              |                   |         |            |              |               |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              |               |
|                                    | 300          |               |               |               | 0           |            |            |              |                   |         | 9.9        | 128          | -             |
| Cu/Ni Tails 1st Cleaner-1          | 5            |               |               | 0             | 6           |            |            |              | 1                 | 2       | 9.9        | 146          | 1             |
| Cu/Ni Tails 1st Cleaner-2          | 5            |               |               | 0             | 7           |            |            |              | 1                 | 2       | 9.0        | 154          | 1             |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              |               |
| CuSEP                              |              |               |               |               |             |            |            |              |                   |         |            |              | 4             |
| Polish Grind (Pepple mill)         | 350          |               |               |               |             |            |            | 3            |                   |         | 11.7       | 2            | 1             |
| Cu Ro 1                            | 0            |               |               |               | 0           |            |            |              | 1                 | 2       | 11.7       | 2            | 1             |
| Cu Ro Scav                         | 0            |               |               | 1             | 1           |            | 1          |              | 1                 | 1       | 11.8       | -22          | 1             |
|                                    |              |               |               |               |             |            |            |              |                   |         |            |              | ]             |
| Cu 1st Cl                          | 80           |               |               |               | 0           |            |            |              | 1                 | 2       | 11.5       | 11           | -             |
| Cu 2nd Cl                          | 145          |               |               |               | 0           |            |            |              | 1                 | 2       | 11.5       | 21           | 4             |
|                                    | 145          |               |               |               | 0           |            |            |              |                   | 2       | 11.5       |              |               |
| Total                              | 1170         | 0             | 0             | 50            | 76          | 37.5       |            |              |                   | 47      |            |              | ]             |
|                                    |              |               |               |               |             |            |            |              | 1                 |         | * Add a    | as required. |               |
| Stage                              | Rougher/S    | cavenger      | Po Roughe     | er            | Cu/Ni 1st/2 | nd Cleaner | Po 1st & 2 | nd Cl        | -                 |         |            |              |               |
| Speed: r.p.m                       | 2 Kg float o | ell           | 2 Kg float o  | :ell          | 1500/1200   | noat cell  | 250g float | cell         | ł                 |         |            |              |               |
| Joheen Uhun                        | 11000        |               | 1000          |               | 11300/1200  |            | 1200       |              | 1                 |         |            |              |               |

| 0 | 5 |
|---|---|
| - | _ |
|   | 0 |

| Brudunt                              | We      | eight |      |      |      | Assa  | ys,% |      |       |       |      |      | 9    | 6 Distributio | on   |      |      | 1 · [ |          |      |
|--------------------------------------|---------|-------|------|------|------|-------|------|------|-------|-------|------|------|------|---------------|------|------|------|-------|----------|------|
| Product                              | g       | %     | Cu   | Ni   | S    | Other | Ср   | Pn   | Po    | Ga    | Cu   | Ni   | S    | Ср            | Pn   | Po   | Ga   |       |          |      |
| F22 Cu 2nd Cleaner Conc              | 5.7     | 0.3   | 32.2 | 0.17 | 33.7 | 33.9  | 93.3 | 0.44 | 2.31  | 3.92  | 21.5 | 0.1  | 0.9  | 21.5          | 0.1  | 0.0  | 0.0  | 1     |          |      |
| F22 Cu 2nd Cleaner Tails             | 6.9     | 0.3   | 30.6 | 0.78 | 33.0 | 35.6  | 88.7 | 2.12 | 3.3   | 5.92  | 24.7 | 0.3  | 1.0  | 24.7          | 0.4  | 0.0  | 0.0  |       |          |      |
| F22 Cu 1st Cleaner Tails             | 5.7     | 0.3   | 19.7 | 7.18 | 34.0 | 39.1  | 57.1 | 19.7 | 19.5  | 3.69  | 13.1 | 2.6  | 0.9  | 13.1          | 3.2  | 0.2  | 0.0  |       |          |      |
| F22 Cu Ro Scav Conc                  | 3.5     | 0.2   | 24.3 | 4.21 | 35.0 | 36.5  | 70.4 | 11.5 | 17.1  | 1.05  | 9.9  | 0.9  | 0.6  | 9.9           | 1.1  | 0.1  | 0.0  |       |          |      |
| F22 Cu Ro Scav Tails                 | 33.6    | 1.7   | 3.18 | 16.3 | 39.2 | 41.3  | 9.2  | 44.5 | 55.3  | -9.02 | 12.5 | 35.2 | 6.0  | 12.5          | 42.6 | 3.6  | -0.2 |       |          |      |
| F22 Cu/Ni 2nd Cl Tails               | 15.9    | 0.8   | 1.16 | 5.26 | 39.2 | 54.4  | 3.4  | 13.4 | 87.3  | -4.04 | 2.2  | 5.4  | 2.9  | 2.2           | 6.1  | 2.7  | 0.0  | 1     |          |      |
| F22 Cu/Ni 1st Cleaner Scav Conc      | 8.1     | 0.4   | 1.42 | 7.82 | 40.2 | 50.6  | 4.12 | 20.6 | 83.0  | -7.73 | 1.3  | 4.1  | 1.5  | 1.3           | 4.8  | 1.3  | 0.0  |       |          |      |
| F22 Cu/Ni Tails 1st Cleaner Conc     | 24.9    | 1.2   | 0.69 | 3.36 | 42.2 | 53.8  | 2.00 | 7.94 | 101.0 | -10.9 | 2.0  | 5.4  | 4.8  | 2.0           | 5.6  | 4.9  | -0.2 |       |          |      |
| F22 Cu/Ni Tails 1st Cleaner Tails    | 132.3   | 6.6   | 0.31 | 1.14 | 26.5 | 72.1  | 0.90 | 2.23 | 66.1  | 30.8  | 4.8  | 9.7  | 16.1 | 4.8           | 8.4  | 17.0 | 2.8  |       |          |      |
| F22 Po 3rd Cleaner Conc              | 12.2    | 0.6   | 0.73 | 4.01 | 43.8 | 51.5  | 2.12 | 9.71 | 103.5 | -15.3 | 1.0  | 3.1  | 2.5  | 1.0           | 3.4  | 2.5  | -0.1 | 1     |          |      |
| F22 Po 3rd Cleaner Tails             | 4.4     | 0.2   | 0.58 | 4.17 | 37.9 | 57.4  | 1.68 | 10.4 | 88.0  | -0.1  | 0.3  | 1.2  | 0.8  | 0.3           | 1.3  | 0.8  | 0.0  |       |          |      |
| F22 Po 2nd Cleaner Tails             | 15.1    | 0.7   | 0.25 | 1.97 | 34.5 | 63.3  | 0.72 | 4.28 | 85.3  | 9.71  | 0.4  | 1.9  | 2.4  | 0.4           | 1.8  | 2.5  | 0.1  |       |          |      |
| F22 Po 1st Cleaner Scav Conc         | 8.9     | 0.4   | 0.36 | 2.53 | 35.4 | 61.7  | 1.04 | 5.83 | 86.0  | 7.1   | 0.4  | 1.4  | 1.4  | 0.4           | 1.5  | 1.5  | 0.0  |       |          |      |
| F22 Po 1st Cleaner Scav Tails        | 212.2   | 10.5  | 0.06 | 0.81 | 29.3 | 69.8  | 0.19 | 1.19 | 74.9  | 23.7  | 1.6  | 11.0 | 28.5 | 1.6           | 7.2  | 31.0 | 3.5  |       |          |      |
| F22 Po Ro Tails                      | 1526.2  | 75.7  | 0.02 | 0.18 | 4.25 | 95.5  | 0.07 | 0.29 | 10.7  | 88.9  | 4.3  | 17.6 | 29.8 | 4.3           | 12.5 | 31.9 | 94.1 |       |          |      |
| Head (Calc.)                         | 2015.6  | 100   | 0.42 | 0.77 | 10.8 | 88.0  | 1.23 | 1.74 | 25.5  | 71.5  | 100  | 100  | 100  | 100           | 100  | 100  | 100  | 1     |          |      |
| Head (Dir.)                          |         |       | 0.42 | 0.79 | 10.4 | 85.3  | 1.22 | 1.81 | 24.4  | 69.5  |      |      |      |               |      |      |      |       |          |      |
|                                      |         |       |      |      |      |       |      |      |       |       |      |      |      |               |      |      |      | Stag  | je Recov | ery  |
| Combined Products                    |         |       |      |      |      |       |      |      |       |       |      |      |      |               |      |      |      | Ср    | Pn       | Po   |
| Cu 2nd Cleaner Conc                  |         | 0.3   | 32.2 | 0.17 | 33.7 | 33.9  | 93.3 | 0.44 | 2.31  | 3.92  | 21.5 | 0.1  | 0.9  | 21.5          | 0.1  | 0.0  | 0.0  | 46.5  | 14.6     | 36.9 |
| Cu 1st Cleaner Conc                  |         | 0.6   | 31.3 | 0.50 | 33.3 | 34.9  | 90.8 | 1.36 | 2.83  | 5.02  | 46.1 | 0.4  | 1.9  | 46.1          | 0.5  | 0.1  | 0.0  | 77.9  | 13.2     | 24.3 |
| Cu Ro Conc                           |         | 0.9   | 27.7 | 2.58 | 33.5 | 36.2  | 80.3 | 7.06 | 8.04  | 4.60  | 59.2 | 3.0  | 2.8  | 59.2          | 3.7  | 0.3  | 0.1  | 72.5  | 7.8      | 7.1  |
| Cu Ro & Scav Conc                    |         | 1.1   | 27.2 | 2.84 | 33.8 | 36.2  | 78.7 | 7.77 | 9.5   | 4.03  | 69.2 | 4.0  | 3.4  | 69.2          | 4.8  | 0.4  | 0.1  | 84.7  | 10.2     | 10.0 |
| Cu/Ni 2nd Cl Conc                    |         | 2.7   | 12.6 | 11.0 | 37.1 | 39.3  | 36.6 | 30.1 | 37.3  | -3.88 | 81.7 | 39.2 | 9.4  | 81.7          | 47.5 | 4.0  | -0.1 | 97.4  | 88.7     | 59.8 |
| Cu/Ni 1st Cl Conc                    |         | 3.5   | 10.1 | 9.72 | 37.5 | 42.7  | 29.2 | 26.3 | 48.4  | -3.92 | 83.8 | 44.5 | 12.3 | 83.8          | 53.5 | 6.7  | -0.2 | 98.4  | 91.8     | 83.7 |
| Cu/Ni 1st Cl & Scav Conc             |         | 3.9   | 9.18 | 9.53 | 37.8 | 43.5  | 26.6 | 25.8 | 51.9  | -4.31 | 85.2 | 48.6 | 13.8 | 85.2          | 58.3 | 8.0  | -0.2 | 92.6  | 80.6     | 26.8 |
| Cu/Ni 1st Cl & Scav Conc & Tails 1st | CI Conc | 5.2   | 7.15 | 8.06 | 38.9 | 45.9  | 20.7 | 21.5 | 63.7  | -5.89 | 87.2 | 54.0 | 18.6 | 87.2          | 63.9 | 12.9 | -0.4 | 94.8  | 88.4     | 43.2 |
| Cu/Ni Ro Conc 1-3                    |         | 11.7  | 3.33 | 4.19 | 31.9 | 60.5  | 9.64 | 10.7 | 65.0  | 14.6  | 92.0 | 63.6 | 34.7 | 92.0          | 72.3 | 30.0 | 2.4  |       |          |      |
| Po 3rd Cleaner Conc                  |         | 0.6   | 0.73 | 4.01 | 43.8 | 51.5  | 2.12 | 9.71 | 103.5 | -15.3 | 1.0  | 3.1  | 2.5  | 1.0           | 3.4  | 2.5  | -0.1 | 77.7  | 72.2     | 76.5 |
| Po 2nd Cleaner Conc                  |         | 0.8   | 0.69 | 4.05 | 42.2 | 53.0  | 2.00 | 9.88 | 99.4  | -11.3 | 1.3  | 4.3  | 3.2  | 1.3           | 4.7  | 3.2  | -0.1 | 75.2  | 71.7     | 56.2 |
| Po 1st Cleaner Conc                  |         | 1.6   | 0.48 | 3.06 | 38.6 | 57.9  | 1.39 | 7.21 | 92.7  | -1.3  | 1.8  | 6.2  | 5.6  | 1.8           | 6.5  | 5.7  | 0.0  | 47.6  | 42.9     | 15.0 |
| Po 1st Cleaner & Scav Conc           |         | 2.0   | 0.45 | 2.94 | 37.9 | 58.7  | 1.32 | 6.91 | 91.2  | 0.6   | 2.2  | 7.7  | 7.1  | 2.2           | 8.0  | 7.2  | 0.0  | 57.6  | 52.6     | 18.9 |
| Po Ro Conc 1-3                       |         | 12.5  | 0.13 | 1.15 | 30.7 | 68.0  | 0.37 | 2.11 | 77.5  | 20.0  | 3.7  | 18.7 | 35.6 | 3.7           | 15.2 | 38.2 | 3.5  |       |          |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3     |         | 24.3  | 1.67 | 2.62 | 31.3 | 64.4  | 4.85 | 6.27 | 71.5  | 17.4  | 95.7 | 82.4 | 70.2 | 95.7          | 87.5 | 68.1 | 5.9  |       |          |      |

| Test: F23  | Project: 18559-01                    | Date: July 29, 2021            | Operator: De           | eepak                             |
|------------|--------------------------------------|--------------------------------|------------------------|-----------------------------------|
| Purpose:   | Based on F2, no DETA in the regrind. |                                |                        |                                   |
| Procedure: | As outlined below.                   |                                |                        |                                   |
| Feed:      | 2kg SN Comp -10 mesh                 | Freezer\SEC-11C                |                        |                                   |
| Grind:     | 34 minutes at 65% solids in 2        | kg Rod Mill # 3                |                        | P <sub>80</sub> =                 |
| Regrind    | 12 minutes at 50% solids in 2        | kg Rod Mill for Cu/Ni R.Cond   | cu/Ni 1st Cl Tails     | P <sub>80</sub> = 41.5 µm Malvern |
|            | 20 minutes at 50% solids in 2        | kg Attrition Mill for Po R.Con | c Po 1st Cl Scav Tails | P <sub>80</sub> = 41.3 µm Malvern |

Conditions:

|                                         |      |   | Reagents | added, gran | ns per tonne |   | · ·   | Time, minute | es    |      |         |            |
|-----------------------------------------|------|---|----------|-------------|--------------|---|-------|--------------|-------|------|---------|------------|
| Stage                                   | Lime |   | PAX      | MIBC*       |              |   | Grind | Cond.        | Froth | pН   | ORP, mV |            |
|                                         | 005  |   |          |             |              |   |       |              |       |      |         | -          |
| Grind                                   | 625  |   | 5        |             |              |   | 34    |              |       | 9.1  | 107     | -          |
| Cu/Ni Rougher No. 1                     | 0    |   |          | 0           |              |   |       | 1            | 1     | 9.0  | 61      | 1          |
| Cu/Ni Rougher No. 2                     | 0    |   | 5        | 0           |              |   |       | 1            | 2     | 8.9  | 127     | 1          |
| Cu/Ni Rougher No. 3                     | 0    |   | 5        | 0           |              |   |       | 1            | 2     | 8.9  | 132     | 1          |
| Regrind (2kg Rod Mill)                  | 200  |   | 1        |             |              |   | 12    |              |       | 9.1  | 166     | Target 9.5 |
| Cu/Ni 1st Cleaner No.1                  | 10   |   |          | 0           |              |   |       | 1            | 2     | 9.5  | 150     | 1          |
| Cu/Ni 1st Cleaner No.2                  | 5    |   | 1        | 0           |              |   |       | 1            | 2     | 9.5  | 141     | 1          |
| Cu/Ni 1st Cleaner No.3                  | 20   |   | 1        | 0           |              |   |       | 1            | 3     | 9.5  | 144     | 1          |
| Cu/Ni 2nd Cleaner No.1                  |      |   |          |             |              |   |       |              | 4     | 9.5  | 76      | -          |
| Cu/Ni 2nd Cleaner No.2                  |      |   | 1        | 2.5         |              |   |       |              | 2     | 9.5  | 109     | 1          |
| Cu/Ni 2nd Cleaner No.3                  |      |   | 1        |             |              |   |       |              |       | 9.8  | 121     | 1          |
| Po Cleaning on (Po Ro Con 1-3)          |      |   |          |             |              |   |       |              |       |      |         | 1          |
| Regrind on Po Ro Con 1-3 only           |      |   |          |             |              |   |       |              |       |      |         | 1          |
| Regrind (Attrition Mill, Ceramic balls) | 250  |   | 0        |             |              |   | 12    |              |       | 9.0  | 90      | Target 9.0 |
| Po 1st Cleaner 1                        | 0    |   | 1        |             |              |   |       | 1            | 1     | 10.3 | 00      | -          |
| Po 1st Cleaner 2                        | 10   |   | 1        |             |              |   |       | 1            | 1     | 0.5  | 90      | -          |
| Po 1st Cleaner-3                        | 0    |   | 2        |             |              |   |       | 1            | 1     | 3.5  | 144     | 1          |
| Po 1st Cleaner-4                        | 0    |   | 2        |             |              |   |       | 1            | 1     |      |         | 1          |
|                                         |      |   |          |             |              |   |       |              |       |      |         |            |
| Po Cleaner Scavenger                    |      |   | 5        |             |              |   |       | 1            | 1     |      |         | -          |
| Po 2nd Cleaner                          | 15   |   | 1        |             |              |   |       | 1            | 2.5   | 9.0  | 151     | 1          |
|                                         |      |   |          |             |              |   |       |              |       |      |         | 1          |
| Po 3rd Cleaner                          | 15   |   | 0+1      |             |              |   |       | 1            | 1+1   | 9.0  | 170     | 1          |
|                                         |      |   |          |             |              |   |       |              |       |      |         | -          |
|                                         |      |   |          |             |              |   |       |              |       |      |         | 1          |
| Total                                   | 510  | 0 | 32       | 2.5         | 0            | 0 |       | 12           | 25.5  |      |         |            |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Braduat                          | We     | eight |      |      |      | Assa  | ıys, % |      |      |       |      |      | 9    | 6 Distributi | on   |      |      | 1    | -       |      |
|----------------------------------|--------|-------|------|------|------|-------|--------|------|------|-------|------|------|------|--------------|------|------|------|------|---------|------|
| Product                          | g      | %     | Cu   | Ni   | S    | Other | Ср     | Pn   | Po   | Ga    | Cu   | Ni   | S    | Ср           | Pn   | Po   | Ga   |      |         |      |
| F23 Cu/Ni 2nd Cl Conc-1          | 107.3  | 5.3   | 16.1 | 9.34 | 35.4 | 39.2  | 46.7   | 25.6 | 27.6 | 0.16  | 83.3 | 41.6 | 11.7 | 83.3         | 49.1 | 4.0  | 0.0  | 1    |         |      |
| F23 Cu/Ni 2nd Cl Conc-2          | 16.2   | 0.8   | 3.11 | 9.83 | 36.9 | 50.2  | 9.01   | 26.4 | 65.0 | -0.44 | 2.4  | 6.6  | 1.8  | 2.4          | 7.7  | 1.4  | 0.0  |      |         |      |
| F23 Cu/Ni 2nd Cl Conc-3          | 13.2   | 0.7   | 1.23 | 5.96 | 37.6 | 55.2  | 3.57   | 15.4 | 81.2 | -0.19 | 0.8  | 3.3  | 1.5  | 0.8          | 3.6  | 1.4  | 0.0  |      |         |      |
| F23 Cu/Ni 2nd Cl Tails           | 14.4   | 0.7   | 0.65 | 2.84 | 34.9 | 61.6  | 1.88   | 6.73 | 83.2 | 8.22  | 0.5  | 1.7  | 1.6  | 0.5          | 1.7  | 1.6  | 0.1  |      |         |      |
| F23 Cu/Ni 1st Cl Tails           | 233.9  | 11.5  | 0.83 | 2.25 | 33.7 | 63.2  | 2.41   | 5.12 | 81.0 | 11.5  | 9.4  | 21.8 | 24.3 | 9.4          | 21.4 | 25.6 | 2.3  |      |         |      |
| F23 Po 3rd Cl Conc               | 12.1   | 0.6   | 0.81 | 3.09 | 36.3 | 59.8  | 2.35   | 7.39 | 85.8 | 4.45  | 0.5  | 1.6  | 1.4  | 0.5          | 1.6  | 1.4  | 0.0  | 1    |         |      |
| F23 Po 3rd CI Tails              | 18.3   | 0.9   | 0.36 | 1.76 | 34.9 | 63.0  | 1.04   | 3.68 | 86.5 | 8.73  | 0.3  | 1.3  | 2.0  | 0.3          | 1.2  | 2.1  | 0.1  |      |         |      |
| F23 Po 2nd Cl Tails              | 66.0   | 3.3   | 0.22 | 1.38 | 34.1 | 64.3  | 0.64   | 2.63 | 85.7 | 11.0  | 0.7  | 3.8  | 6.9  | 0.7          | 3.1  | 7.7  | 0.6  |      |         |      |
| F23 Po 1st Cl Scav Conc          | 21.4   | 1.1   | 0.21 | 1.58 | 34.9 | 63.3  | 0.61   | 3.17 | 87.4 | 8.84  | 0.2  | 1.4  | 2.3  | 0.2          | 1.2  | 2.5  | 0.2  |      |         |      |
| F23 Po 1st Cl Scav Tails         | 272.8  | 13.5  | 0.06 | 0.76 | 31.3 | 67.9  | 0.17   | 0.98 | 80.3 | 18.5  | 0.8  | 8.6  | 26.3 | 0.8          | 4.8  | 29.6 | 4.3  |      |         |      |
| F23 Po Ro Tails                  | 1252.0 | 61.7  | 0.02 | 0.16 | 5.21 | 94.6  | 0.06   | 0.20 | 13.3 | 86.4  | 1.2  | 8.3  | 20.1 | 1.2          | 4.4  | 22.5 | 92.3 |      |         |      |
| Head (Calc.)                     | 2027.6 | 100   | 1.02 | 1.19 | 16.0 | 81.8  | 2.97   | 2.75 | 36.5 | 57.8  | 100  | 100  | 100  | 100          | 100  | 100  | 100  | 1    |         |      |
| Head (Dir.)                      |        |       | 1.07 | 1.17 | 16.5 | 81.3  | 3.10   | 2.69 | 37.7 | 56.5  |      |      |      |              |      |      |      |      |         |      |
| T                                |        |       |      |      |      |       |        |      |      |       |      |      |      |              |      |      |      | Sta  | ge Reco | very |
| Combined Products                |        |       |      |      |      |       |        |      |      |       |      |      |      |              |      |      |      | Ср   | Pn      | Po   |
| Cu/Ni 2nd Cl Conc 1              |        | 5.3   | 16.1 | 9.34 | 35.4 | 39.2  | 46.7   | 25.6 | 27.6 | 0.2   | 83.3 | 41.6 | 11.7 | 83.3         | 49.1 | 4.0  | 0.0  | 95.8 | 79.0    | 47.1 |
| Cu/Ni 2nd Cl Conc 1-2            |        | 6.1   | 14.4 | 9.40 | 35.6 | 40.6  | 41.7   | 25.7 | 32.5 | 0.1   | 85.7 | 48.2 | 13.6 | 85.7         | 56.8 | 5.4  | 0.0  | 98.6 | 91.3    | 63.9 |
| Cu/Ni 2nd Cl Conc 1-3            |        | 6.7   | 13.1 | 9.07 | 35.8 | 42.0  | 38.0   | 24.7 | 37.2 | 0.1   | 86.5 | 51.5 | 15.1 | 86.5         | 60.5 | 6.9  | 0.0  | 99.5 | 97.2    | 80.9 |
| Cu/Ni 1st Cl Conc 1-3            |        | 7.5   | 11.9 | 8.48 | 35.7 | 43.9  | 34.6   | 23.0 | 41.6 | 0.8   | 86.9 | 53.2 | 16.6 | 86.9         | 62.2 | 8.5  | 0.1  | 90.3 | 74.4    | 24.9 |
| Cu/Ni Ro Conc 1-3                |        | 19.0  | 5.19 | 4.69 | 34.5 | 55.6  | 15.0   | 12.1 | 65.5 | 7.3   | 96.3 | 75.0 | 41.0 | 96.3         | 83.6 | 34.1 | 2.4  |      |         |      |
| Po 3rd Cleaner Conc              |        | 0.6   | 0.81 | 3.09 | 36.3 | 59.8  | 2.35   | 7.39 | 85.8 | 4.4   | 0.5  | 1.6  | 1.4  | 0.5          | 1.6  | 1.4  | 0.0  | 59.8 | 57.0    | 39.6 |
| Po 2nd Cleaner Conc              |        | 1.5   | 0.54 | 2.29 | 35.5 | 61.7  | 1.56   | 5.16 | 86.3 | 7.0   | 0.8  | 2.9  | 3.3  | 0.8          | 2.8  | 3.5  | 0.2  | 53.0 | 47.4    | 31.7 |
| Po 1st Cleaner Conc              |        | 4.8   | 0.32 | 1.67 | 34.5 | 63.5  | 0.93   | 3.43 | 85.9 | 9.7   | 1.5  | 6.7  | 10.3 | 1.5          | 5.9  | 11.2 | 0.8  | 59.7 | 49.6    | 25.8 |
| Po 1st Cleaner & Scav Conc       |        | 5.8   | 0.30 | 1.65 | 34.6 | 63.5  | 0.87   | 3.38 | 86.2 | 9.6   | 1.7  | 8.1  | 12.6 | 1.7          | 7.1  | 13.7 | 1.0  | 68.4 | 59.8    | 31.7 |
| Po Ro Conc 1-3                   |        | 19.3  | 0.13 | 1.03 | 32.3 | 66.5  | 0.38   | 1.71 | 82.1 | 15.8  | 2.5  | 16.7 | 38.9 | 2.5          | 11.9 | 43.4 | 5.3  |      |         |      |
| Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3 |        | 38.3  | 2.64 | 2.85 | 33.4 | 61.1  | 7.66   | 6.88 | 73.9 | 11.6  | 98.8 | 91.7 | 79.9 | 98.8         | 95.6 | 77.5 | 7.7  | 1    |         |      |
| Po Ro Feed                       |        | 81.0  | 0.05 | 0.37 | 11.7 | 87.9  | 0.14   | 0.56 | 29.7 | 69.6  | 3.7  | 25.0 | 59.0 | 3.7          | 16.4 | 65.9 | 97.6 |      |         |      |
| Test: F37                                | Project:                             | 18559-01                                                                                             | I                                                                             | Date:                                                 | Augus                                           | st 31, 2021                  |                                       | Operator:                             | Deepak                                               |                               |                                 |         |                                                                     |                |
|------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|------------------------------|---------------------------------------|---------------------------------------|------------------------------------------------------|-------------------------------|---------------------------------|---------|---------------------------------------------------------------------|----------------|
| Purpose:                                 | Similar to                           | F36, with                                                                                            | P Comp                                                                        |                                                       |                                                 |                              |                                       |                                       |                                                      |                               |                                 |         | Product Wet We<br>Po Ro Conc 392.34<br>Cu/Ni 1st CL Sc Tails 197.39 | rigl<br>↓<br>a |
| Procedure:                               | As outline                           | ed below.                                                                                            |                                                                               |                                                       |                                                 |                              |                                       |                                       |                                                      |                               |                                 |         |                                                                     | ,              |
| Feed:                                    | 2kg P Co                             | <mark>omp -10 m</mark>                                                                               | esh                                                                           |                                                       | Freezer\SI                                      | EC-11C                       | Box 11502                             | 25                                    |                                                      |                               |                                 |         |                                                                     |                |
| Grind:<br>Regrind<br>Note:               | 39<br>18<br>30<br>1.<br><b>check</b> | <ul> <li>minutes</li> <li>minutes</li> <li>minutes</li> <li>Assay: C</li> <li>size on the</li> </ul> | at 65% solids<br>at 50% solids<br>at 50% solids<br>u, Ni, S, Pt, P<br>he feed | s in 2 kg Ro<br>s in 2 kg Ro<br>s in 2 kg At<br>d, Au | od Mill # 3<br>od Mill for C<br>trition Mill fo | cu/Ni R.Conc<br>or Po 1st Cl | Cu/Ni 1<br>Po 1st Cl S<br>Po 1st Cl S | st Cl Feed<br>Scav Feed<br>Scav Tails | $P_{80} =$<br>$P_{80} =$<br>$P_{80} =$<br>$P_{80} =$ | 25.5 µm<br>35.6 µm<br>34.9 µm | n Malvern<br>Malvern<br>Malvern |         |                                                                     |                |
| Conditions:                              |                                      |                                                                                                      |                                                                               |                                                       |                                                 |                              |                                       |                                       |                                                      |                               |                                 | -       |                                                                     |                |
| Stage                                    | Lime                                 | DETA                                                                                                 | Reagents                                                                      | added, gra                                            | ams per ton<br>MIBC*                            | ne<br>                       | CuSO4                                 | Ti<br>Grind                           | me, minut<br>Cond.                                   | es<br>Froth                   | pН                              | ORP, mV |                                                                     |                |
| Grind                                    | 550                                  |                                                                                                      |                                                                               | 5                                                     |                                                 |                              |                                       | 39                                    |                                                      |                               | 9.0                             | 144     |                                                                     |                |
| Cu/Ni Rougher No. 1                      | 0                                    |                                                                                                      |                                                                               | 5                                                     | 0                                               |                              |                                       |                                       | 1                                                    | 1                             | 9.0                             | 144     |                                                                     |                |
| Cu/Ni Rougher No. 2                      | 0                                    |                                                                                                      |                                                                               | 5                                                     | 5                                               |                              |                                       |                                       | 1                                                    | 2                             | ~9                              | 153     |                                                                     |                |
| Cu/Ni Rougher No. 3                      | 0                                    |                                                                                                      |                                                                               | 5                                                     | 2.5                                             |                              |                                       |                                       | 1                                                    | 2                             | ~9                              | 160     | Keep Cu/Ni and Po separate                                          |                |
| Po Rougher No. 1                         | 0                                    |                                                                                                      |                                                                               | 20                                                    | 2.5                                             |                              |                                       |                                       | 1                                                    | 3                             | natural pH                      | 161     |                                                                     |                |
| Po Rougher No. 2                         | 0                                    |                                                                                                      |                                                                               | 20                                                    | 5                                               |                              |                                       |                                       | 1                                                    | 3                             | natural pH                      | 169     |                                                                     |                |
| Po Rougher No. 3                         | 0                                    |                                                                                                      |                                                                               | 20                                                    | 10                                              |                              | 50                                    |                                       | 1                                                    | 3                             | natural pH                      | 180     |                                                                     |                |
| Po Rougher Scav                          | 0                                    |                                                                                                      |                                                                               | 30                                                    |                                                 |                              | 50                                    |                                       | 1                                                    | 3                             | natural pH                      | 180     |                                                                     |                |
| Regrind Cu/Ni Ro Conc (2kg Rod Mill)     | 150                                  | 25                                                                                                   |                                                                               | 1                                                     |                                                 |                              |                                       | 18                                    |                                                      |                               | 8.9                             | 149     | Target ~40 um                                                       |                |
| Cu/Ni 1st Cleaner No 1                   | 10                                   | -                                                                                                    |                                                                               | 0                                                     |                                                 |                              |                                       |                                       | 1                                                    | 2                             | 9.5                             | 102     | Target 9.5                                                          |                |
| Cu/Ni 1st Cleaner No.2                   | 0                                    |                                                                                                      |                                                                               | 6                                                     |                                                 |                              |                                       |                                       | 1                                                    | 2                             | ~                               | 136     |                                                                     |                |
| Cu/Ni 1st Cleaner Scav                   | 40                                   |                                                                                                      |                                                                               | 2+5                                                   |                                                 |                              |                                       |                                       | 1                                                    | 2+2                           | 9.5                             | 113     |                                                                     |                |
| Regrind Cu/Ni 1st Cl Scav 1 Tails + Po R | o Conc 1-3                           | 3 (Attrition                                                                                         | n Mill)                                                                       |                                                       |                                                 |                              |                                       |                                       |                                                      |                               |                                 |         | Target ~15 um                                                       |                |
|                                          | 200                                  |                                                                                                      |                                                                               |                                                       |                                                 |                              |                                       | 30                                    |                                                      |                               | 9.4                             | 135     | Target 9.5                                                          |                |
| Po 1st Cleaner-1                         | 5                                    |                                                                                                      |                                                                               | 2                                                     |                                                 |                              |                                       |                                       | 1                                                    | 2                             | 9.5                             | 122     |                                                                     |                |
| Po 1st Cleaner-2                         | 0                                    |                                                                                                      |                                                                               | 2                                                     |                                                 |                              |                                       |                                       | 1                                                    | 2                             | ~                               | ~       |                                                                     |                |
| Po 1st Cleaner Scav                      | 0                                    |                                                                                                      |                                                                               | 0                                                     |                                                 |                              |                                       |                                       | 1                                                    | 2                             | ~                               | 174     |                                                                     |                |
| Po 2nd Cleaner                           | 5                                    |                                                                                                      |                                                                               | 0                                                     |                                                 |                              |                                       |                                       | 1                                                    | 3                             | 9.0                             | 152     |                                                                     |                |
|                                          |                                      |                                                                                                      |                                                                               |                                                       |                                                 |                              |                                       |                                       |                                                      |                               |                                 |         |                                                                     |                |
|                                          |                                      |                                                                                                      |                                                                               |                                                       |                                                 |                              |                                       |                                       |                                                      |                               |                                 |         |                                                                     |                |
| lotal                                    | 410                                  | 25                                                                                                   | 0                                                                             | 121                                                   | 25                                              | 0                            |                                       |                                       | 14                                                   | 30                            |                                 |         | 1                                                                   |                |

| Stage          | Rougher/Scavenge | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell  | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800             | 1800            | 1500/1200             | 1200            |

#### Metallurgical Balance

| Product                                     | ght           | Assays, % |      |      |              |       |              |      |              | % Distribution |            |      |      |              |              |              |            |
|---------------------------------------------|---------------|-----------|------|------|--------------|-------|--------------|------|--------------|----------------|------------|------|------|--------------|--------------|--------------|------------|
| Floudet                                     | g             | %         | Cu   | Ni   | S            | Other | Ср           | Pn   | Ро           | Ga             | Cu         | Ni   | S    | Ср           | Pn           | Ро           | Ga         |
| F37 Cu/Ni 1st Cleaner Conc-1                | 30.6          | 1.5       | 16.6 | 11.2 | 35.7         | 36.5  | 48.1         | 30.8 | 22.6         | -1.5           | 62.2       | 22.6 | 5.4  | 62.2         | 27.3         | 1.5          | 0.0        |
| F37 Cu/Ni 1st Cleaner Conc-2                | 22.9          | 1.1       | 6.43 | 12.7 | 37.9         | 43.0  | 18.6         | 34.6 | 51.9         | -5.1           | 18.0       | 19.2 | 4.3  | 18.0         | 23.0         | 2.5          | -0.1       |
| F37 Cu/Ni 1st Cleaner Scav Conc             | 18.6          | 0.9       | 2.11 | 8.85 | 40.0         | 49.0  | 6.12         | 23.5 | 78.2         | -7.8           | 4.8        | 10.8 | 3.7  | 4.8          | 12.7         | 3.1          | -0.1       |
| F37 Po 2nd Cleaner Conc                     | 37.8          | 1.9       | 0.93 | 3.38 | 45.9         | 49.8  | 2.70         | 7.88 | 110.0        | -20.6          | 4.3        | 8.4  | 8.5  | 4.3          | 8.6          | 8.7          | -0.5       |
| F37 Po 2nd Cleaner Tails                    | 36.2          | 1.8       | 0.32 | 1.91 | 33.5         | 64.3  | 0.93         | 4.15 | 82.6         | 12.3           | 1.4        | 4.6  | 6.0  | 1.4          | 4.4          | 6.3          | 0.3        |
| F37 Po 1st Cleaner Scav Conc                | 19.1          | 1.0       | 0.47 | 2.38 | 36.4         | 60.8  | 1.36         | 5.38 | 88.7         | 4.6            | 1.1        | 3.0  | 3.4  | 1.1          | 3.0          | 3.6          | 0.1        |
| F37 Po 1st Cleaner Scav Tails               | 398.5         | 19.9      | 0.09 | 0.81 | 31.1         | 68.0  | 0.27         | 1.13 | 79.6         | 19.0           | 4.5        | 21.3 | 61.0 | 4.5          | 13.1         | 66.5         | 5.2        |
| F37 Po Ro Scav Conc                         | 44.5          | 2.2       | 0.09 | 0.86 | 28.7         | 70.4  | 0.26         | 1.35 | 73.2         | 25.2           | 0.5        | 2.5  | 6.3  | 0.5          | 1.7          | 6.8          | 0.8        |
| F37 Po Ro Tails                             | 1397.7        | 69.7      | 0.02 | 0.08 | 0.21         | 99.7  | 0.05         | 0.15 | 0.4          | 99.4           | 3.1        | 7.6  | 1.4  | 3.1          | 6.2          | 1.1          | 94.5       |
| Head (Calc.)                                | 2005.9        | 100       | 0.41 | 0.76 | 10.1         | 88.7  | 1.18         | 1.72 | 23.8         | 73.3           | 100        | 100  | 100  | 100          | 100          | 100          | 100        |
| Head (Dir.)                                 |               |           | 0.42 | 0.79 | 10.4         | 88.4  | 1.22         | 1.80 | 24.4         | 72.6           |            |      |      |              |              |              |            |
| Combined Breducto                           |               |           |      |      |              |       |              |      |              |                |            |      |      |              |              |              |            |
|                                             | 20.6          | 15        | 16.6 | 11.0 | 25.7         |       | 10 1         | 20.0 | 22.6         | 1.5            | 62.2       | 22.6 | 5.4  | 62.2         | 27.2         | 15           | 0.0        |
| Cu/Ni 1st Cl Conc 1 2                       | 53.5          | 1.5       | 10.0 | 11.2 | 36.6         |       | 40.1<br>35.5 | 30.0 | 22.0         | -1.0           | 80.3       | 22.0 | 0.7  | 02.Z<br>80.3 | Z7.3<br>50.3 | 3.0          | 0.0        |
|                                             | 72.1          | 2.1       | 0.62 | 11.0 | 27.5         |       | 27.0         | 20.1 | 46.2         | -3.0           | 00.5       | 52.6 | 12.2 | 00.5         | 62.0         | 7.0          | -0.1       |
| Po 2nd Cl Cono                              | 27.0          | 1.0       | 9.03 | 2 20 | 45.0         |       | 27.9         | 7 00 | 40.2         | -4.5           | 4.2        | 0 /  | 0.5  | 4.2          | 00.0         | 0.7          | -0.2       |
| Po 1st Cl Conc                              | 37.0<br>74.0  | 1.9       | 0.93 | 2.50 | 40.9<br>30.8 |       | 1.93         | 6.05 | 06.6         | -20.0          | 4.3        | 0.4  | 0.0  | 4.3          | 0.0          | 0.7          | -0.5       |
| Po 1st Cl & Secur Cone                      | 02.1          | 3.7       | 0.03 | 2.00 | 39.0<br>20.1 |       | 1.00         | 5.01 | 90.0         | -4.0           | 5.7<br>6.0 | 16.0 | 14.0 | 5.7          | 16.0         | 10.0         | -0.2       |
| Cu/Ni 1at Cl Taila & Da Da Cana 1.2         | 93.1<br>401.6 | 4.0       | 0.00 | 2.00 | 22.1         |       | 1.73         | 2.04 | 95.0         | -2.0           | 0.0        | 27.2 | 70.0 | 0.0          | 20.0         | 10.0<br>95.1 | -0.2       |
| Cu/Ni TSL CI Talls & FU RU CUIL T-3         | 491.0         | 24.0      | 1.19 | 2.42 | 32.0         |       | 4.05         | 2.04 | 02.0<br>77.0 | 14.9           | 06.4       | 00.0 | 19.0 | 06.4         | 29.0         | 00.1         | 0.0<br>1 0 |
|                                             | 003.7         | 20.1      | 1.40 | 2.42 | 33.Z         |       | 4.05         | 5.03 | 77.5         | 12.0           | 90.4       | 09.0 | 92.3 | 90.4         | 92.0         | 92.1         | 4.0        |
| Cu/INI TSE CI & Scav Conc & Po 1st CI & Sca | 608.2         | 30.3      | 1.30 | 2.30 | 32.9         |       | 3.11         | 5.3  | C.11         | 13.4           | 90.9       | 92.4 | 98.0 | 96.9         | 93.8         | 98.9         | 5.5        |

| Propertie         Build to B37, with \$8 Cong.         Proceedings         Dial of B37, B37, B37, B37, B37, B37, B37, B37,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test: F39                                | Project:             | 18559-01                                |                                                 | Date:                                         | Septem                                       | ber 14, 2021                |                        | Operator:               | Deepak                                                      |                  |                        |         | 5                                      |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------|------------------------|-------------------------|-------------------------------------------------------------|------------------|------------------------|---------|----------------------------------------|-------------------------|
| Productive     Auditional and the lead of the lead            | Purpose:                                 | Similar to           | F37, with                               | SN Comp                                         |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         | Product<br>Cu/Ni R. Conc<br>Po R. Conc | Wet Weigi<br>317<br>566 |
| Fed:       Index of the south                         | Procedure:                               | As outline           | ed below.                               |                                                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         | Cu/Ni Cl Sc Tails                      | 242.6                   |
| Brinds       14       Indues 16 % ealies 12 good Mile 72       Deg 2       25       Indues 16 % ealies 12 good Mile 70       De 16 C Store Po       Pe       25       25       Indues 15 % ealies 12 good Mile 70       De 16 C Store Po       Pe       25       25       Indues 15 % ealies 12 good Mile 70       De 16 C Store Po       Pe       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       25       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Feed:                                    | 2kg SN C             | Comp -10 n                              | nesh                                            |                                               | Freezer\S                                    | EC-11C                      |                        |                         |                                                             |                  |                        |         |                                        |                         |
| Ner:         1. Assign to the level           Continue         Sector           State         Image         Image         Regular         Note         Cold of the level         Note         Note </th <th>Grind:<br/>Regrind</th> <th>34<br/>22.5<br/>15+15</th> <th>minutes a minutes a minutes a minutes a</th> <th>at 65% solids<br/>at 50% solids<br/>at 50% solids</th> <th>s in 2 kg Ro<br/>s in 2 kg Ro<br/>s in 2 kg Att</th> <th>d Mill # 3<br/>d Mill for C<br/>rition Mill fo</th> <th>u/Ni R.Conc<br/>or Po 1st Cl</th> <th>Cu/Ni 1<br/>Po 1st Cl 3</th> <th>st Cl Feed<br/>Scav Feed</th> <th>P<sub>80</sub> =<br/>P<sub>80</sub> =<br/>P<sub>80</sub> =</th> <th>26.7 μn<br/>25 μn</th> <th>າ Malvern<br/>າ Malvern</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                               | Grind:<br>Regrind                        | 34<br>22.5<br>15+15  | minutes a minutes a minutes a minutes a | at 65% solids<br>at 50% solids<br>at 50% solids | s in 2 kg Ro<br>s in 2 kg Ro<br>s in 2 kg Att | d Mill # 3<br>d Mill for C<br>rition Mill fo | u/Ni R.Conc<br>or Po 1st Cl | Cu/Ni 1<br>Po 1st Cl 3 | st Cl Feed<br>Scav Feed | P <sub>80</sub> =<br>P <sub>80</sub> =<br>P <sub>80</sub> = | 26.7 μn<br>25 μn | າ Malvern<br>າ Malvern |         |                                        |                         |
| Conditions:         Stage         Line         DETA         Reagents action of the stand                                            | Note:                                    | 1.<br>check          | Assay: Ci<br>size on th                 | ı, Ni, S<br><mark>e feed</mark>                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         |                                        |                         |
| Nome         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conditions:                              |                      |                                         |                                                 |                                               |                                              |                             |                        | -                       |                                                             |                  |                        |         | _                                      |                         |
| Grind         Col         Col </th <th>Stage</th> <th>Lime</th> <th>DETA</th> <th>Reagents</th> <th>added, gra</th> <th>ms per ton<br/>MIBC*</th> <th>ne</th> <th>CuSO4</th> <th>T<br/>Grind</th> <th>ime, minut<br/>Cond.</th> <th>es<br/>Froth</th> <th>pН</th> <th>ORP, mV</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage                                    | Lime                 | DETA                                    | Reagents                                        | added, gra                                    | ms per ton<br>MIBC*                          | ne                          | CuSO4                  | T<br>Grind              | ime, minut<br>Cond.                                         | es<br>Froth      | pН                     | ORP, mV |                                        |                         |
| Cu/Wi Rougher No. 1         O         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grind                                    | 625                  |                                         |                                                 | 5                                             |                                              |                             |                        | 34                      |                                                             |                  | 9.4                    | 161     |                                        |                         |
| Curve       O       S       S       S       Image: Curve in a constraint of the                                                             |                                          |                      |                                         |                                                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         |                                        |                         |
| Curvit Rougher No. 2       0       5       5       1       1       2       -9       172         Curvit Rougher No. 3       0       5       5       1       1       2       -9       172         Po Rougher No. 1       0       10       5       1       1       2       -9       177         Po Rougher No. 2       0       10       5       1       5'       natural pH       133         Po Rougher No. 2       0       10       5       1       5'       natural pH       149         Po Rougher No. 3       0       10       5       1       5'       natural pH       149         Po Rougher No. 3       0       10       5       1       5'       natural pH       149         Po Rougher Scav       0       25       2       2       2       2       9       183       184         CuNi 1st Cleaner No.1       25       2       2       2       2       9       183       135       135         CuNi 1st Cleaner No.1       25       2       2       2       1       3       9.5       135         CuNi 1st Cleaner No.1       25       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cu/Ni Rougher No. 1                      | 0                    |                                         |                                                 | 5                                             | 5                                            |                             |                        |                         | 1                                                           | 1                | 9.4                    | 168     |                                        |                         |
| Cu/Ni Rougher No.3       0       5       5       0       1       2       -9       177       Reep Cu/Ni and Po separate         Po Rougher No.1       0       10       10       10       1       1       3       natural pH       133         Po Rougher No.2       0       10       5       1       1       5'       natural pH       136         Po Rougher No.3       0       10       5       1       1       5'       natural pH       136         Po Rougher No.3       0       10       5       1       3       natural pH       136         Po Rougher No.3       0       10       5       1       3       natural pH       136         Po Rougher Scav       0       25       2       2       1       50       1       3       natural pH       169         Regrind Cu/Ni Ro Conc (2kg Rod Mill)       250       25       2       2       1       3       -       17       3       7       178         Cu/Ni 1st Cleaner No.2       0       3       1       1       1       3       -       1       1       3       -       1       1       131       3       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cu/Ni Rougher No. 2                      | 0                    |                                         |                                                 | 5                                             | 5                                            |                             |                        |                         | 1                                                           | 2                | ~9                     | 172     |                                        |                         |
| Po Rougher No. 1       0       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 </td <td>Cu/Ni Rougher No. 3</td> <td>0</td> <td></td> <td></td> <td>5</td> <td>5</td> <td></td> <td></td> <td></td> <td>1</td> <td>2</td> <td>~9</td> <td>177</td> <td>Keep Cu/Ni and Po separate</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cu/Ni Rougher No. 3                      | 0                    |                                         |                                                 | 5                                             | 5                                            |                             |                        |                         | 1                                                           | 2                | ~9                     | 177     | Keep Cu/Ni and Po separate             |                         |
| D Rougher No. 2       0       10       5       1       5       1       5       1       10       10       5       11       13       134       144       149       136       144       149       136       144       149       136       144       149       136       144       149       136       144       149       136       144       149       136       144       149       136       144       149       136       144       149       149       136       144       149       149       149       149       149       146       145       144       149       149       149       149       146       145       149       149       149       149       149       149       146       145       149       149       149       149       149       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146       146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Po Rougher No. 1                         | 0                    |                                         |                                                 | 10                                            |                                              |                             |                        |                         | 1                                                           | 3                | natural nH             | 133     |                                        |                         |
| D Rougher No. 3       0       10       5       1       5       natural pit       100         Po Rougher Scav       0       30       50       1       5       natural pit       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Po Rougher No. 2                         | 0                    |                                         |                                                 | 10                                            | 5                                            |                             |                        |                         | 1                                                           | 5*               | natural pl             | 136     | -                                      |                         |
| O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Po Rougher No. 3                         | 0                    |                                         |                                                 | 10                                            | 5                                            |                             |                        |                         | 1                                                           | 5*               | natural pl             | 149     | -                                      |                         |
| Po Rougher Scav       0       1       30       1       30       1       3       natural pH       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169       169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·    | -                    |                                         |                                                 |                                               | -                                            |                             |                        |                         |                                                             | -                |                        | 1.10    | -                                      | Ci                      |
| Regrind Cu/Ni Ro Conc (2kg Rod Mill)         250         25         2         2         1         22.5         9.1         183         Target -30 um           Cu/Ni 1st Cleaner No.1         25         2         2         1         1         2         9.1         183           Cu/Ni 1st Cleaner No.2         0         2         1         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         3         ~         1         1         3         9.5         135         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Po Rougher Scav                          | 0                    |                                         |                                                 | 30                                            |                                              |                             | 50                     |                         | 1                                                           | 3                | natural pH             | 169     |                                        | DE                      |
| Cu/N1 St Cleaner No.1       25       2       1       2       9.5       183         Cu/N1 1st Cleaner No.2       0       33       1       1       3       ~       178         Cu/N1 1st Cleaner No.2       0       33       1       1       3       ~       178         Cu/N1 1st Cleaner Scav       30       1       5       1       1       3       ~       178         Regrind Cu/Ni 1st Cl Scav 1 Tails + Po Ro Conc 1-3 (Attrition Mill)       Split to 2       1       1       1       3       9.5       138         Po 1st Cleaner-1       0       4       1       15+15       1       9.1       138         Po 1st Cleaner-2       0       2       1       1       1       9.1       138         Po 2nd Cleaner       5       1       1       1       1       9.1       138         Po 3rd Cleaner       5       1       1       1       2       ~       ~       ~         Po 3rd Cleaner       5       1       1       1       2       .       .       .       .       .       .       .         Po 3rd Cleaner       5       1       .       .       . <td>Regrind Cu/Ni Ro Conc (2kg Rod Mill)</td> <td>250</td> <td>25</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>22.5</td> <td></td> <td></td> <td>9.1</td> <td>183</td> <td>Target ~30 um</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Regrind Cu/Ni Ro Conc (2kg Rod Mill)     | 250                  | 25                                      |                                                 | 2                                             |                                              |                             |                        | 22.5                    |                                                             |                  | 9.1                    | 183     | Target ~30 um                          |                         |
| Cu/Ni 1st Cleaner No.1       25       2       2       1       2       9.5       183         Cu/Ni 1st Cleaner No.2       0       33       1       1       3       ~       178         Cu/Ni 1st Cleaner No.2       0       33       1       1       3       ~       178         Cu/Ni 1st Cleaner Scav       30       5       5       1       1       3       9.5       135         Regrind Cu/Ni 1st Cl Scav 1 Tails + Po Ro Conc 1-3 (Attrition Mill)       Split to 2       1       1       3       9.5       135         Po 1st Cleaner-1       0       4       1       1       9.1       138       Target 9.0         Po 1st Cleaner-2       0       4       1       1       9.1       138       Target 9.0         Po 2nd Cleaner       5       1       1       1       9.1       138       Target 9.0         Po 3nd Cleaner       5       1       1       1       2       9.0       186         Po 3nd Cleaner       5       0       1       2       9.0       186       1         Po 3nd Cleaner       5       0       0       1       2       9.0       152 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Target 9.5</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                      |                                         |                                                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         | Target 9.5                             |                         |
| Cu/Ni 1st Cleaner No.2       0       3       3       1       3       ~       178         Cu/Ni 1st Cleaner Scav       30       5       1       1       3       ~       178         Cu/Ni 1st Cleaner Scav       30       5       1       1       3       9.5       135         Regrind Cu/Ni 1st Cl Scav 1 Tails + Po Ro       Conc 1-3 (Attrition Mill)       Split to 2       1       1       3       9.5       138         Po 1st Cleaner-1       0       4       1       1       1       9.1       138         Po 1st Cleaner-2       0       4       1       1       1       9.1       138         Po 2nd Cleaner       0       4       1       1       1       9.1       138         Po 3nd Cleaner       0       4       1       1       2       9.0       152         Po 3nd Cleaner       5       0       0       4       1       1       2       9.0       152         Po 3nd Cleaner       5       0       0       1       2       9.0       152         Po 3nd Cleaner       5       0       0       1       2       9.0       152         Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cu/Ni 1st Cleaner No.1                   | 25                   |                                         |                                                 | 2                                             |                                              |                             |                        |                         | 1                                                           | 2                | 9.5                    | 183     |                                        |                         |
| Cu/Ni 1st Cleaner Scav       30       5       1       1       3       9.5       135         Regrind Cu/Ni 1st Cl Scav 1 Tails + Po Ro Conc 1-3 (Attrition Mill)       Split 02       1       1       3       9.5       135         100+100       25       1       1       1       3       9.1       138       138         Po 1st Cleaner-1       0       4       1       1       1       9.1       138       138         Po 1st Cleaner-2       0       4       1       1       9.1       138       138         Po 2nd Cleaner       0       4       1       1       9.1       138       138         Po 1st Cleaner-2       0       4       1       1       9.1       138       138         Po 2nd Cleaner       1       1       9.1       138       138       138       138         Po 2nd Cleaner       1       1       2       9.0       186       16       16       17       17       17       17       17       188       188       188       188       188       188       188       188       188       188       188       188       188       188       188       188 <td>Cu/Ni 1st Cleaner No.2</td> <td>0</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>3</td> <td>~</td> <td>178</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu/Ni 1st Cleaner No.2                   | 0                    |                                         |                                                 | 3                                             |                                              |                             |                        |                         | 1                                                           | 3                | ~                      | 178     |                                        |                         |
| Regrind Cu/Ni 1st Cl Scav 1 Tails + Po Ro Conc 1-3 (Attrition Mill)Split 02Image: Conc Conc 1-3 (Attrition Mill)Split 02Image: Conc Conc Conc Conc Conc Conc Conc Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cu/Ni 1st Cleaner Scav                   | 30                   |                                         |                                                 | 5                                             |                                              |                             |                        |                         | 1                                                           | 3                | 9.5                    | 135     |                                        |                         |
| Regrind Cu/Ni 1st Cl Scav 1 Tails + Po Ro Conc 1-3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image: Conc 1 - 3 (Attrition Mill)       Split to 2       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                      |                                         |                                                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         |                                        |                         |
| 100+100       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Regrind Cu/Ni 1st Cl Scav 1 Tails + Po R | o Conc 1-3           | (Attrition                              | Mill)                                           | Split to 2                                    |                                              |                             |                        |                         |                                                             |                  |                        |         | Target ~15 um                          |                         |
| Po 1st Cleaner-1       0       4       -       -       1       1       9.1       138         Po 1st Cleaner-2       0       2       -       1       2       ~       ~         Po 1st Cleaner-2       0       -       2       -       1       2       ~       ~         Po 1st Cleaner-2       0       -       -       -       -       -       -       -         Po 1st Cleaner-2       0       -       -       -       -       -       -       -         Po 2nd Cleaner       5       1       1       -       -       -       -       -       -         Po 3nd Cleaner       5       0       0       -       -       -       -       -         Total       315       50       0       99       25       0       14       26       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | <mark>100+100</mark> | 25                                      |                                                 |                                               |                                              |                             |                        | 15+15                   |                                                             |                  | 9.1                    | 138     | Target 9.0                             |                         |
| Po 1st Cleaner-2       0       2        1       2       ~       ~         Po 1st Cleaner-2 <td>Po 1st Cleaner-1</td> <td>0</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>9.1</td> <td>138</td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Po 1st Cleaner-1                         | 0                    |                                         |                                                 | 4                                             |                                              |                             |                        |                         | 1                                                           | 1                | 9.1                    | 138     | -                                      |                         |
| Image: Constraint of the second se | Po 1st Cleaner-2                         | 0                    |                                         |                                                 | 2                                             |                                              |                             |                        |                         | 1                                                           | 2                | ~                      | ~       | 1                                      |                         |
| Po 2nd Cleaner       5       1       1       2       9.0       186         Po 3rd Cleaner       5       0       0       1       2       9.0       186         Po 3rd Cleaner       5       0       0       1       2       9.0       186         Total       315       50       0       99       25       0       1       2       9.0       186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                      |                                         |                                                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         |                                        |                         |
| Po 2nd Cleaner       5       1       1       2       9.0       186         Po 3nd Cleaner       5       0       0       1       2       9.0       186         Po 3nd Cleaner       5       0       0       1       2       9.0       186         Total       315       50       0       99       25       0       1       2       9.0       186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                      |                                         |                                                 |                                               |                                              |                             |                        |                         |                                                             |                  |                        |         |                                        |                         |
| Po 3rd Cleaner       5       0       1       2       9.0       152         Image: Constraint of the second s                                                                                               | Po 2nd Cleaner                           | 5                    |                                         |                                                 | 1                                             |                                              |                             |                        |                         | 1                                                           | 2                | 9.0                    | 186     |                                        |                         |
| Total         315         50         0         99         25         0         14         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Po 3rd Cleaner                           | 5                    |                                         |                                                 | 0                                             |                                              |                             |                        |                         | 1                                                           | 2                | 9.0                    | 152     |                                        |                         |
| Total 315 50 0 99 25 0 14 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                      |                                         |                                                 | <u> </u>                                      |                                              |                             |                        |                         |                                                             |                  |                        |         |                                        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lotal                                    | 315                  | 50                                      | 0                                               | 99                                            | 25                                           | 0                           |                        |                         | 14                                                          | 26               |                        |         | ]                                      |                         |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

С DE

#### Metallurgical Balance

| Broduct                             | Wei    | ght  |      |      |      | Assays, | %    |      |      |      | % Distribution |      |      |      |      |      |      |
|-------------------------------------|--------|------|------|------|------|---------|------|------|------|------|----------------|------|------|------|------|------|------|
| Product                             | g      | %    | Cu   | Ni   | S    | Other   | Ср   | Pn   | Po   | Ga   | Cu             | Ni   | S    | Ср   | Pn   | Po   | Ga   |
| F39 Cu/Ni 1st Cleaner Conc-1        | 63.9   | 3.4  | 19.9 | 8.4  | 33.9 | 37.8    | 57.7 | 23.1 | 15.8 | 3.4  | 69.2           | 24.3 | 7.1  | 69.2 | 29.0 | 1.4  | 0.2  |
| F39 Cu/Ni 1st Cleaner Conc-2        | 20.0   | 1.1  | 11.9 | 14.1 | 33.3 | 40.7    | 34.5 | 38.9 | 21.8 | 4.8  | 13.0           | 12.8 | 2.2  | 13.0 | 15.3 | 0.6  | 0.1  |
| F39 Cu/Ni 1st Cleaner Scav Conc     | 21.9   | 1.2  | 4.54 | 13.4 | 34.1 | 48.0    | 13.2 | 36.6 | 45.2 | 5.0  | 5.4            | 13.3 | 2.5  | 5.4  | 15.7 | 1.4  | 0.1  |
| F39 Po 3rd Cleaner Conc             | 20.7   | 1.1  | 1.84 | 7.64 | 36.8 | 53.7    | 5.33 | 20.2 | 73.4 | 1.0  | 2.1            | 7.2  | 2.5  | 2.1  | 8.2  | 2.2  | 0.0  |
| F39 Po 3rd Cleaner Tails            | 20.3   | 1.1  | 0.66 | 2.78 | 36.1 | 60.5    | 1.91 | 6.52 | 86.4 | 5.1  | 0.7            | 2.6  | 2.4  | 0.7  | 2.6  | 2.5  | 0.1  |
| F39 Po 2nd Cleaner Tails            | 55.8   | 3.0  | 0.42 | 1.81 | 32.9 | 64.9    | 1.22 | 3.89 | 81.0 | 13.9 | 1.3            | 4.6  | 6.0  | 1.3  | 4.3  | 6.5  | 0.7  |
| F39 Po 1st Cleaner Tails            | 630.7  | 33.4 | 0.21 | 1.09 | 33.6 | 65.1    | 0.61 | 1.84 | 85.1 | 12.4 | 7.2            | 31.1 | 69.7 | 7.2  | 22.8 | 77.0 | 7.2  |
| F39 Po Ro Scav Conc                 | 58.3   | 3.1  | 0.11 | 0.71 | 31.9 | 67.3    | 0.32 | 0.82 | 81.9 | 17.0 | 0.3            | 1.9  | 6.1  | 0.3  | 0.9  | 6.8  | 0.9  |
| F39 Po Ro Tails                     | 998.3  | 52.8 | 0.01 | 0.05 | 0.44 | 99.5    | 0.04 | 0.06 | 1.1  | 98.8 | 0.8            | 2.4  | 1.4  | 0.8  | 1.2  | 1.5  | 90.7 |
| Head (Calc.)                        | 1889.9 | 100  | 0.97 | 1.17 | 16.1 | 81.8    | 2.82 | 2.69 | 36.9 | 57.6 | 100            | 100  | 100  | 100  | 100  | 100  | 100  |
| Head (Dir.)                         |        |      | 1.07 | 1.17 | 16.5 | 81.3    | 3.10 | 2.69 | 37.7 | 56.5 |                |      |      |      |      |      |      |
|                                     |        |      |      |      |      |         |      |      |      |      |                |      |      |      |      |      |      |
| Combined Products                   |        |      |      |      |      |         |      |      |      |      |                |      |      |      |      |      |      |
| Cu/Ni 1st Cl Conc 1                 | 63.9   | 3.4  | 19.9 | 8.40 | 33.9 |         | 57.7 | 23.1 | 15.8 | 3.4  | 69.2           | 24.3 | 7.1  | 69.2 | 29.0 | 1.4  | 0.2  |
| Cu/Ni 1st Cl Conc 1-2               | 83.9   | 4.4  | 18.0 | 9.76 | 33.8 |         | 52.2 | 26.9 | 17.2 | 3.7  | 82.2           | 37.1 | 9.3  | 82.2 | 44.3 | 2.1  | 0.3  |
| Cu/Ni 1st Cl & Scav Conc            | 105.8  | 5.6  | 15.2 | 10.5 | 33.8 |         | 44.1 | 28.9 | 23.0 | 4.0  | 87.6           | 50.3 | 11.8 | 87.6 | 60.0 | 3.5  | 0.4  |
| Po 3rd Cl Conc                      | 20.7   | 1.1  | 1.84 | 7.64 | 36.8 |         | 5.33 | 20.2 | 73.4 | 1.0  | 2.1            | 7.2  | 2.5  | 2.1  | 8.2  | 2.2  | 0.0  |
| Po 2nd Cl Conc                      | 41.0   | 2.2  | 1.26 | 5.23 | 36.5 |         | 3.64 | 13.4 | 79.9 | 3.1  | 2.8            | 9.7  | 4.9  | 2.8  | 10.8 | 4.7  | 0.1  |
| Po 1st Cl Conc                      | 96.8   | 5.1  | 0.77 | 3.26 | 34.4 |         | 2.24 | 7.93 | 80.5 | 9.3  | 4.1            | 14.3 | 11.0 | 4.1  | 15.1 | 11.2 | 0.8  |
| Cu/Ni 1st Cl Tails & Po Ro Conc 1-3 | 727.5  | 38.5 | 0.29 | 1.38 | 33.7 |         | 0.83 | 2.65 | 84.5 | 12.0 | 11.3           | 45.4 | 80.7 | 11.3 | 37.8 | 88.2 | 8.0  |
| Cu/Ni Ro Conc 1-3 & Po Ro Conc      | 833.3  | 44.1 | 2.18 | 2.54 | 33.7 |         | 6.32 | 5.98 | 76.7 | 11.0 | 98.9           | 95.7 | 92.4 | 98.9 | 97.9 | 91.7 | 8.4  |
|                                     |        |      |      |      |      |         |      |      |      |      |                |      |      |      |      |      |      |

| Test: LCT-1 | Project: 18559-01              | Date: July 29, 2021                                       | Operator: Deepak  |
|-------------|--------------------------------|-----------------------------------------------------------|-------------------|
| Purpose:    | Based on F-19, LCT-1           |                                                           |                   |
| Procedure:  | As outlined below.             |                                                           |                   |
| Feed:       | 2kg SN Comp -10 mesh           | Freezer\SEC-11C                                           |                   |
| Grind:      | 20 minutes at 65% solids in 2  | kg Rod Mill # 3                                           | P <sub>80</sub> = |
| Regrind     | 12 minutes at 50% solids in 2  | kg Rod Mill for Cu/Ni R.Conc                              | P <sub>80</sub> = |
|             | 10 minutes at 50% solids in At | ttrition Mill for Po R. <mark>Conc - Ceramic balls</mark> | P <sub>80</sub> = |

#### Conditions:

|                                         |               |           | Reagents      | added, grar | ns per tonne | •          |                   | ٦     | Fime, minute | es    |            |              |                        |
|-----------------------------------------|---------------|-----------|---------------|-------------|--------------|------------|-------------------|-------|--------------|-------|------------|--------------|------------------------|
| Stage                                   | Lime          |           |               | DETA        | PAX          | MIBC*      |                   | Grind | Cond.        | Froth | рН         | ORP, mV      |                        |
| Grind                                   | 625           |           |               |             | 5            |            |                   | 20    |              |       | 8.9        | 151          |                        |
| Cu/Ni Rougher No. 1                     | 25            |           |               |             |              |            |                   |       | 1            | 2     | 9.0        | 158          | -                      |
| Cu/Ni Rougher No. 2                     | 25            |           |               |             | 5            | 2.5        |                   |       | 1            | 2     | 9.0        | 159          |                        |
| Cu/Ni Rougher No. 3                     | 15            |           |               |             | 5            |            |                   |       | 1            | 2     | 9.0        | 174          |                        |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |               |           |               |             |              |            |                   |       |              |       |            |              |                        |
| Regrind (2kg Rod Mill)                  | 225           |           |               | 25          | 2            |            |                   | 12    |              |       | 9.3        | 172          | Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 5             |           |               |             |              |            |                   |       | 1            | 2     | 9.5        | 144          | Target pH 9.5          |
| Cu/Ni 1st Cleaner No.2                  | 40            |           |               |             | 3            |            |                   |       | 1            | 3     | 9.5        | 143          |                        |
| Cu/Ni Cleaner Scav                      | 30            |           |               |             | 2            |            |                   |       | 1            | 3     | 9.5        | 148          | -                      |
| Cu/Ni Cleaner Scalp                     |               |           |               |             | 10           |            |                   |       |              | 5     | 9.5        |              | -                      |
| Cu/Ni 2nd Cleaner                       |               |           |               |             |              |            |                   |       |              | 4     | 9.5        |              |                        |
| Po Rougher No. 1                        | <u> </u>      |           |               |             | 10           |            |                   |       | 1            | 3     | natural pH | 195          | -                      |
| Po Rougher No. 2                        | -             |           |               |             | 10           | 5          |                   |       | 1            | 5     | natural pH | 210          | -                      |
| Po Rougher No. 3                        | -             |           |               |             | 10           | 5          |                   |       | 1            | 5     | natural pH | 223          |                        |
| Po Cleaning on (Po Ro Con 1-3+Cu/       | li Cleaner S  | calp Conc | )             | Add Cu/N    | i Cleaner Sc | alp Conc S | Starting Cyc      | le B  |              |       |            |              |                        |
| Regrind (Attrition Mill, Ceramic balls) | 250           |           |               | 25          | 0            |            |                   | 10    |              |       |            | 90           | Check Malvern size     |
| Po 1st Cleaner-1                        | 0             |           |               |             | 4            |            |                   |       | 1            | 1     | 9.0        | 90           | Target pH 9.0          |
| Po 1st Cleaner-2                        | 0             |           |               |             | 2            |            |                   |       | 1            | 1     | 9.0        | 132          |                        |
| Po 1st Cleaner-3                        | 0             |           |               |             | 2            |            |                   |       | 1            | 1     | 9.0        |              |                        |
| Po 2nd Cleaner                          |               |           |               |             | 1            |            |                   |       | 1            | 2     | 9.0        |              | Target pH 9.0          |
| Po 3rd Cleaner                          |               |           |               |             | 1            |            |                   |       | 1            | 2     | 9.0        |              | -                      |
| Total                                   | 615           | 0         | 0             | 50          | 67           | 12.5       |                   |       |              | 43    |            |              |                        |
|                                         |               |           |               |             |              |            | <b>I-</b> ( ) ( - |       | 1            |       | * Add a    | as required. |                        |
| Stage                                   | Rougher/S     | cavenger  | Po Rough      | er<br>      | Cu/Ni 1st/2  | nd Cleaner | Po 1st & 2        | nd Cl | 4            |       |            |              |                        |
| I Flotation Cell                        | 12 kg float o | ell       | 12 kg float d | ell         | 1500a/250a   | float cell | 1250g float       | cell  |              |       |            |              |                        |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| TARGET WEIGHTS                   | Wt. (Dry g.) | Wt. (Wet g.) | A      | В      | С      | D      | E      | F      |
|----------------------------------|--------------|--------------|--------|--------|--------|--------|--------|--------|
| Cu/Ni 2nd Clnr Conc (exit)       | 160          | 201          | 158.65 | 165.44 | 162.14 | 153.14 | 160.7  | 169.85 |
| Po 3rd Clnr Conc (exit)          | 40           | 60           | 48.15  | 54.5   | 54.2   | 53.5   | 50.57  | 44.21  |
| Cu/Ni Scalp Tail (exit)          | 200          | 248          | 130    | 487.9  | 351.1  | 293.8  | 166.47 | 208.45 |
| Po 1st CI Tails (exit)           | 220          | 272          | 477.3  | 408.3  | 545.11 | 592    | 578.94 | 574.63 |
| Po Ro Tail (exit)                | 1379         | 1635         |        |        |        |        |        |        |
| Cu/Ni Ro Conc (intermediate)     | 440          | 531          |        |        |        |        |        |        |
| Po Ro Conc (Intermediate)        | 400          | 484          |        |        |        |        |        |        |
| Cu/Ni Cl Scalp Conc (cyc F only) |              |              |        |        |        |        |        | 123.52 |



| Test: LCT-1 | Project: 18559-01       | Date: July 29, 2021                             | Operator: Deepak/Marteen |
|-------------|-------------------------|-------------------------------------------------|--------------------------|
| Purpose:    | Based on F-19, LCT-1    |                                                 |                          |
| Procedure:  | As outlined below.      |                                                 |                          |
| Feed:       | 2kg SN Comp -10 mesh    | Freezer\SEC-11C                                 |                          |
| Grind:      | 20 minutes at 65% soli  | ds in 2 kg Rod Mill # 3                         | P <sub>80</sub> =        |
| Regrind     | 12 minutes at 50% solid | ds in 2 kg Rod Mill for Cu/Ni R.Conc            | P <sub>80</sub> =        |
|             | 10 minutes at 50% soli  | ds in Attrition Mill for Po R.Conc - Ceramic ba | lls P <sub>80</sub> =    |

| Conditions:                             | Cycle        | Α         |                |            |               |            |               |       |              |       |       |              | _                      |
|-----------------------------------------|--------------|-----------|----------------|------------|---------------|------------|---------------|-------|--------------|-------|-------|--------------|------------------------|
|                                         |              |           | Reagents       | added, gra | ms per tonne  | •          |               |       | Time, minute | es    |       |              |                        |
| Stage                                   | Lime         |           |                | DETA       | PAX           | MIBC*      |               | Grind | Cond.        | Froth | pН    | ORP, mV      | _                      |
| Grind                                   | 625          |           |                |            | 5             |            |               | 20    |              |       | 8.6   | 50           | -                      |
| Cu/Ni Rougher No. 1                     | 60           |           |                |            |               |            |               |       | 1            | 2     | 9.0   | 0            |                        |
| Cu/Ni Rougher No. 2                     | 50           |           |                |            | 5             | 2.5        |               |       | 1            | 2     | 9.0   | 0            |                        |
| Cu/Ni Rougher No. 3                     | 20           |           |                |            | 5             | 5          |               |       | 1            | 2     | 9.0   | 50           |                        |
| Cu/Ni Rougher No. 4                     | 25           |           |                |            | 2.5           | 5          |               |       | 1            | 2     | 9.0   | 50           |                        |
| Cu/Ni Rougher No. 5                     | 20           |           |                |            | 2.5           | 7.5        |               |       | 1            | 2     | 9.0   | 50           | -                      |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |              |           |                |            |               |            |               |       |              |       |       |              | -                      |
| Regrind (2kg Rod Mill)                  | 225          |           |                | 25         | 2             |            |               | 12    |              |       | 9.0   | 141          | Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 30           |           |                |            |               |            |               |       | 1            | 2     | 9.5   | 113          | Target pH 9.5          |
| Cu/Ni 1st Cleaner No.2                  | 15           |           |                |            | 3             |            |               |       | 1            | 3     | 9.5   | 155          |                        |
| Cu/Ni Cleaner Scav                      | 25           |           |                |            | 2             |            |               |       | 1            | 3     | 9.5   | 135          | -                      |
| Cu/Ni Cleaner Scalp                     | 30           |           |                |            | 10            |            |               |       |              | 5     | 9.5   | 118          | -                      |
|                                         |              |           |                |            |               |            |               |       |              |       |       |              | -                      |
| Cu/Ni 2nd Cleaner                       | 30           |           |                |            | 0             |            |               |       |              | 4     | 9.5   | 138          | -                      |
| Po Rougher No. 1                        | -            |           |                |            | 10            |            |               |       | 1            | 3     | 8.5   | 50           |                        |
| Po Rougher No. 2                        | -            |           |                |            | 10            | 5          |               |       | 1            | 5     | 8.2   | 50           |                        |
| Po Rougher No. 3                        | -            |           |                |            | 10            | 5          |               |       | 1            | 5     | 8.1   | 50           |                        |
| Po Cleaning on (Po Ro Con 1-3+Cu/l      | Vi Cleaner S | calp Conc | )              | Add Cu/N   | li Cleaner So | alp Conc S | Starting Cycl | e B   |              |       |       |              |                        |
| Regrind (Attrition Mill, Ceramic balls) | 250          |           |                | 25         | 0             |            |               | 10    |              |       | 9.0   | 90           | Check Malvern size     |
| Po 1st Cleaner-1                        | 0            |           |                |            | 4             |            |               |       | 1            | 1     | 9.0   | 90           | Target pH 9.0          |
| Po 1st Cleaner-2                        | 10           |           |                |            | 2             |            |               |       | 1            | 1     | 9.0   | 156          |                        |
| Po 1st Cleaner-3                        | 20           |           |                |            | 2             |            |               |       | 1            | 1     | 9.0   | 171          |                        |
| Po 2nd Cleaner                          | 10           |           |                |            | 1             |            |               |       | 1            | 2     | 9.0   | 164          | Target pH 9.0          |
| Po 3rd Cleaner                          | 15           |           |                |            | 1             |            |               |       | 1            | 2     | 9.0   | 161          | -                      |
| Total                                   | 835          | 0         | 0              | 50         | 72            | 30         |               |       |              | 47    |       |              |                        |
| Store                                   | Bougher's    |           | Do Boursh      | or         |               | nd Clooner | Do 1ot 9 0-   | 4.01  | 1            |       | * Add | as required. |                        |
| Flotation Cell                          | 2 kg float c |           | 2 kg float     |            | 500a/250a     | float cell | 250g float o  |       | 4            |       |       |              |                        |
|                                         | ry nual t    |           | I ≤ KY IIUal I |            | 10009/2009    | nual uen   | 12JUY IIUAL C |       | 1            |       |       |              |                        |

1500/1200

Speed: r.p.m.

1800

1800

1200

| Test: LCT-1 | Project: 18559-01       | Date: July 29, 2021                             | Operator: Deepak/Marteen |
|-------------|-------------------------|-------------------------------------------------|--------------------------|
| Purpose:    | Based on F-19, LCT-1    |                                                 |                          |
| Procedure:  | As outlined below.      |                                                 |                          |
| Feed:       | 2kg SN Comp -10 mesh    | Freezer\SEC-11C                                 |                          |
| Grind:      | 20 minutes at 65% solid | ds in 2 kg Rod Mill # 3                         | P <sub>80</sub> =        |
| Regrind     | 12 minutes at 50% solid | ds in 2 kg Rod Mill for Cu/Ni R.Conc            | P <sub>80</sub> =        |
|             | 10 minutes at 50% solid | ds in Attrition Mill for Po R.Conc - Ceramic ba | alls P <sub>80</sub> =   |

| Conditions:                             | Cycle         | В         |            |            |              |            |                  |       |              |       |       |                | _                      |
|-----------------------------------------|---------------|-----------|------------|------------|--------------|------------|------------------|-------|--------------|-------|-------|----------------|------------------------|
|                                         |               |           | Reagents   | added, gra | ms per tonne |            |                  | 1     | Fime, minute | es    |       |                |                        |
| Stage                                   | Lime          |           |            | DETA       | PAX          | W31        |                  | Grind | Cond.        | Froth | pН    | ORP, mV        |                        |
| Grind                                   | 625           |           |            |            | 5            |            |                  | 20    |              |       |       |                |                        |
| Cu/Ni Rougher No. 1                     | 0             |           |            |            | 5            | 5          |                  |       | 1            | 2     | 9.1   | 0              |                        |
| Cu/Ni Rougher No. 2                     | 20            |           |            |            | 5            | 5          |                  |       | 1            | 2     | 9.0   | 0              |                        |
| Cu/Ni Rougher No. 3                     | 30            |           |            |            | 5            | 5          |                  |       | 1            | 2     | 9.0   | 50             |                        |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |               |           |            |            |              |            |                  |       |              |       |       |                | -                      |
| Regrind (2kg Rod Mill)                  | 225           |           |            | 25         | 2            |            |                  | 12    |              |       | 9.0   | 141            | Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 30            |           |            |            |              |            |                  |       | 1            | 2     | 9.5   | 113            | Target pH 9.5          |
| Cu/Ni 1st Cleaner No.2                  | 15            |           |            |            | 3            |            |                  |       | 1            | 3     | 9.5   | 155            | i algor pi i olo       |
| Cu/Ni Cleaner Scav                      | 25            |           |            |            | 2            |            |                  |       | 1            | 3     | 95    | 125            | -                      |
|                                         | 20            |           |            |            | -            |            |                  |       |              | Ŭ     | 0.0   | 155            | -                      |
| Cu/Ni Cleaner Scalp                     | 30            |           |            |            | 10           |            |                  |       |              | 5     | 9.5   | 118            |                        |
| Cu/Ni 2nd Cleanar                       | 20            |           |            |            | 2            |            |                  |       |              | 410   | 0.5   | 400            | -                      |
|                                         | 30            |           |            |            | 2            |            |                  |       |              | 4+2   | 9.5   | 138            | -                      |
| Po Rougher No. 1                        | -             |           |            |            | 10           |            |                  |       | 1            | 3     | 8.3   | 25             |                        |
| Po Rougher No. 2                        | -             |           |            |            | 10           | 5          |                  |       | 1            | 5     | 8.2   | 50             |                        |
| Po Rougher No. 3                        | -             |           |            |            | 10           | 5          |                  |       | 1            | 5     | 8.0   | 50             |                        |
| Po Cleaning on (Po Ro Con 1-3+Cu/N      | vi Cleaner S  | calp Conc | )          | Add Cu/N   | i Cleaner So | alp Conc S | Starting Cyo     | le B  |              |       |       |                | 1                      |
| Regrind (Attrition Mill, Ceramic balls) | 250           |           |            | 25         | 0            |            |                  | 10    |              |       | 9.0   | 90             | Check Malvern size     |
| Po 1st Cleaner-1                        | 0             |           |            |            | 4            |            |                  |       | 1            | 1     | 9.0   | 90             | Target pH 9.0          |
| Po 1st Cleaner-2                        | 10            |           |            |            | 2            |            |                  |       | 1            | 1     | 9.0   | 156            |                        |
| Po 1st Cleaner-3                        | 20            |           |            |            | 2            |            |                  |       | 1            | 1     | 9.0   | 171            |                        |
| Po 2nd Cleaner                          | 5             |           |            |            | 0            |            |                  |       | 1            | 2     | 9.0   | 83             | Target pH 9.0          |
|                                         |               |           |            |            |              |            |                  |       |              |       |       |                |                        |
| Po 3rd Cleaner                          | 5             |           |            |            | 0            |            |                  |       | 1            | 2     | 9.0   | 146            | -                      |
| Total                                   | 695           | 0         | 0          | 50         | 72           | 25         |                  |       |              | 39    |       |                |                        |
|                                         |               |           |            |            | 0.000        |            | <b>D</b> 4 4 6 6 |       | 1            |       | * Add | l as required. |                        |
| Stage                                   | Rougher/S     | cavenger  | Po Rough   | er         | Cu/Ni 1st/2  | nd Cleaner | Po 1st & 2       | nd Cl | 4            |       |       |                |                        |
| Flotation Cell                          | 12 kg float c | ell       | 2 kg float | cell       | 500g/250g    | fioat cell | 250g float       | cell  |              |       |       |                |                        |

Speed: r.p.m.

1800

1800

| Test: LCT-1 | Project: 18559-01       | Date: July 29, 2021                            | Operator: Deepak/Marteen      |
|-------------|-------------------------|------------------------------------------------|-------------------------------|
| Purpose:    | Based on F-19, LCT-1    |                                                |                               |
| Procedure:  | As outlined below.      |                                                |                               |
| Feed:       | 2kg SN Comp -10 mesh    | Freezer\SEC-11C                                |                               |
| Grind:      | 20 minutes at 65% solid | ls in 2 kg Rod Mill # 3                        | P <sub>80</sub> =             |
| Regrind     | 20 minutes at 50% solid | ls in 2 kg Rod Mill for Cu/Ni R.Conc           | P <sub>80</sub> =             |
|             | 20 minutes at 50% solid | ls in Attrition Mill for Po R.Conc - Ceramic b | palls 4.5mm P <sub>80</sub> = |

| Conditions:                             | Cycle         | С         |               |            |               |            |             |       |              |       |       |              |                             |
|-----------------------------------------|---------------|-----------|---------------|------------|---------------|------------|-------------|-------|--------------|-------|-------|--------------|-----------------------------|
|                                         |               |           | Reagents      | added, gra | ms per tonne  |            |             |       | Time, minute | es    |       |              | 7                           |
| Stage                                   | Lime          |           |               | DETA       | PAX           | W31        |             | Grind | Cond.        | Froth | pН    | ORP, mV      | _                           |
| Grind                                   | 625           |           |               |            | 5             |            |             | 20    |              |       |       |              | -                           |
| Cu/Ni Rougher No. 1                     | 25            |           |               |            | 5             | 5          |             |       | 1            | 2     | 9.1   | 0            | -                           |
| Cu/Ni Rougher No. 2                     | 20            |           |               |            | 5             | 5          |             |       | 1            | 2     | 9.0   | 0            |                             |
| Cu/Ni Rougher No. 3                     | 40            |           |               |            | 5             | 5          |             |       | 1            | 2     | 9.0   | 50           |                             |
| Cu/Ni Rougher No. 4                     | 20            |           |               |            | 2.5           |            |             |       | 1            | 1     | 9.0   | 50           | -                           |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |               |           |               |            |               |            |             |       |              |       |       |              | _                           |
| Regrind (2kg Rod Mill)                  | 225           |           |               | 25         | 2             |            |             | 12    |              |       | 8.9   | 144          | -<br>Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 50            |           |               |            |               |            |             |       | 1            | 2     | 9.5   | 78           | Target pH 9.5               |
| Cu/Ni 1st Cleaner No.2                  | 30            |           |               |            | 3             |            |             |       | 1            | 3     | 9.5   | 137          |                             |
| Cu/Ni Cleaner Scav                      | 40            |           |               |            | 2             |            |             |       | 1            | 3     | 9.5   | 135          | -                           |
| Cu/Ni Cleaner Scalp                     | 40            |           |               |            | 10            |            |             |       |              | 5     | 9.5   | 134          | -                           |
| Cu/Ni 2nd Cleaner                       | 20            |           |               |            | 2             |            |             |       |              | 4     | 9.5   | 121          | -                           |
| Po Rougher No. 1                        |               |           |               |            | 10            | 5          |             |       | 1            | 3     | 8.4   | 50           | -                           |
| Po Rougher No. 2                        | -             |           |               |            | 10            | 0          |             |       | 1            | 5     | 8.2   | 50           | -                           |
| Po Cleaning on (Po Ro Con 1-3+Cu/N      | Vi Cleaner S  | calp Conc | )             | Add Cu/N   | li Cleaner Sc | alp Conc S | tarting Cyc | le B  |              |       |       |              |                             |
| Regrind (Attrition Mill, Ceramic balls) | 250           |           |               | 25         | 0             |            |             | 10    |              |       | 9.8   | 40           | Check Malvern size          |
| Po 1st Cleaner-1                        | 0             |           |               |            | 4             |            |             |       | 1            | 1     | 9.8   | 40           | Target pH 9.0               |
| Po 1st Cleaner-2                        | 0             |           |               |            | 0             |            |             |       | 1            | 1     | 9.0   | 160          |                             |
| Po 1st Cleaner-3                        | 5             |           |               |            | 0             |            |             |       | 1            | 1     | 9.0   | 164          | -                           |
| Po 2nd Cleaner                          | 5             |           |               |            | 0             |            |             |       | 1            | 2     | 9.0   | 146          | Target pH 9.0               |
| Po 3rd Cleaner                          | 5             |           |               |            | 0             |            |             |       | 1            | 2     | 9.0   | 164          | -                           |
| Total                                   | 775           | 0         | 0             | 50         | 60.5          | 20         |             |       |              | 39    |       |              |                             |
| Stage                                   | Rougher/S     | cavender  | Po Rouch      | or         |               | nd Cleanor | Po 1st 8 2  | nd Cl | Г            |       | * Add | as required. |                             |
| Elotation Cell                          | 2 kg float c  |           | 2 kg float    | cell       | 500a/250a     | float cell | 250g float  |       | -            |       |       |              |                             |
|                                         | j∠ ky iiual ( |           | 12 Ky IIUal I | UCII       | 10009/2009    | nual uen   | 200y noat   | 001   | 1            |       |       |              |                             |

Speed: r.p.m.

1800

1800

| Test: LCT-1 | Project: 18559-01        | Date: July 29, 2021                                       | Operator: Deepak/Marteen      |
|-------------|--------------------------|-----------------------------------------------------------|-------------------------------|
| Purpose:    | Based on F-19, LCT-1     |                                                           |                               |
| Procedure:  | As outlined below.       |                                                           |                               |
| Feed:       | 2kg SN Comp -10 mesh     | Freezer\SEC-11C                                           |                               |
| Grind:      | 20 minutes at 65% solid  | s in 2 kg Rod Mill # 3                                    | P <sub>80</sub> =             |
| Regrind     | 20 minutes at 50% solids | s in 2 kg Rod Mill for Cu/Ni R.Conc                       | P <sub>80</sub> =             |
|             | 20 minutes at 50% solids | s in Attrition Mill for Po R. <mark>Conc - Ceramic</mark> | balls 4.5mm P <sub>80</sub> = |

| Conditions:                             | Cycle        | D         |            |            |              |            |              |       |             |       |       |              | _                      |
|-----------------------------------------|--------------|-----------|------------|------------|--------------|------------|--------------|-------|-------------|-------|-------|--------------|------------------------|
|                                         |              |           | Reagents   | added, gra | ms per tonne |            |              |       | Time, minut | es    |       |              |                        |
| Stage                                   | Lime         |           |            | DETA       | PAX          | MIBC*      |              | Grind | Cond.       | Froth | pН    | ORP, mV      |                        |
| Grind                                   | 625          |           |            |            | 5            |            |              | 20    |             |       | 8.8   |              | ]                      |
| Cu/Ni Rougher No. 1                     | 25           |           |            |            | 5            |            |              |       | 1           | 2     | 9.0   | 25           | -                      |
| Cu/Ni Rougher No. 2                     | 20           |           |            |            | 5            | 2.5        |              |       | 1           | 2     | 9.0   | 50           |                        |
| Cu/Ni Rougher No. 3                     | 40           |           |            |            | 5            |            |              |       | 1           | 2     | 9.0   | 50           |                        |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |              |           |            |            |              |            |              |       |             |       |       |              | -                      |
| Regrind (2kg Rod Mill)                  | 225          |           |            | 25         | 2            |            |              | 20    |             |       | 8.7   | 181          | Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 15           |           |            |            |              |            |              |       | 1           | 2     | 9.5   | 161          | Target pH 9.5          |
| Cu/Ni 1st Cleaner No.2                  | 30           |           |            |            | 5            | 2.5        |              |       | 1           | 3     | 9.5   | 136          |                        |
| Cu/Ni Cleaner Scav                      | 55           |           |            |            | 2            |            |              |       | 1           | 3     | 9.5   | 137          |                        |
| Cu/Ni Cleaner Scalp                     | 25           |           |            |            | 10           |            |              |       |             | 5     | 9.5   | 138          | -                      |
|                                         |              |           |            |            |              |            |              |       |             |       |       |              |                        |
| Cu/Ni 2nd Cleaner                       | 10           |           |            |            | 2+2          |            |              |       |             | 4+2   | 9.5   | 138          |                        |
| Po Rougher No. 1                        | -            |           |            |            | 10           |            |              |       | 1           | 3     | 8.5   | 50           | -                      |
| Po Rougher No. 2                        | -            |           |            |            | 10           | 5          |              |       | 1           | 5     | 8.2   | 50           |                        |
| Po Rougher No. 3                        | -            |           |            |            | 10           | 5          |              |       | 1           | 5     | 8.0   | 50           |                        |
| Po Cleaning on (Po Ro Con 1-3+Cu/       | Ni Cleaner S | calp Conc | )          | Add Cu/N   | i Cleaner Sc | alp Conc S | starting Cyc | le B  |             |       |       |              | -                      |
| Regrind (Attrition Mill, Ceramic balls) | 250          |           |            | 25         | 0            |            |              | 20    |             |       | 9.0   | 159          | Check Malvern size     |
| Po 1st Cleaner-1                        | 0            |           |            |            | 4            |            |              |       | 1           | 1     | 9.8   | 159          | Target pH 9.0          |
| Po 1st Cleaner-2                        | 5            |           |            |            | 0            |            |              |       | 1           | 1     | 9.0   | 160          |                        |
| Po 1st Cleaner-3                        | 5            |           |            |            | 0            |            |              |       | 1           | 1     | 9.0   | 134          |                        |
| Po 2nd Cleaner                          | 5            |           |            |            | 0            |            |              |       | 1           | 2     | 9.0   | 158          | Target pH 9.0          |
| Po 3rd Cleaner                          | 5            |           |            |            | 0            |            |              |       | 1           | 2     | 9.0   | 151          | -                      |
| Total                                   | 715          | 0         | 0          | 50         | 68           | 15         |              |       |             | 39    |       |              |                        |
|                                         |              |           |            |            |              |            |              |       |             |       | * Add | as required. |                        |
| Stage                                   | Rougher/S    | cavenger  | Po Rough   | er         | Cu/Ni 1st/2  | nd Cleaner | Po 1st & 2   | nd Cl | 4           |       |       |              |                        |
| Flotation Cell                          | 2 kg float o | ell       | 2 kg float | cell       | 500g/250g    | float cell | 250g float   | cell  | 1           |       |       |              |                        |

Speed: r.p.m.

1800

1800

| Test: LCT-1 | Project: 18559-01      | Date: July 29, 2021                             | Operator: Deepak/Marteen |
|-------------|------------------------|-------------------------------------------------|--------------------------|
| Purpose:    | Based on F-19, LCT-1   |                                                 |                          |
| Procedure:  | As outlined below.     |                                                 |                          |
| Feed:       | 2kg SN Comp -10 mesh   | Freezer\SEC-11C                                 |                          |
| Grind:      | 20 minutes at 65% soli | ds in 2 kg Rod Mill # 3                         | P <sub>80</sub> =        |
| Regrind     | 12 minutes at 50% soli | ds in 2 kg Rod Mill for Cu/Ni R.Conc            | P <sub>80</sub> =        |
|             | 10 minutes at 50% soli | ds in Attrition Mill for Po R.Conc - Ceramic ba | lls P <sub>80</sub> =    |

| Conditions:                             | Cycle        | E         |              |             |              |            |             |       |              |       |            |              | _                      |
|-----------------------------------------|--------------|-----------|--------------|-------------|--------------|------------|-------------|-------|--------------|-------|------------|--------------|------------------------|
|                                         |              |           | Reagents     | added, grar | ns per tonne | 1          |             | -     | Time, minute | es    |            |              |                        |
| Stage                                   | Lime         |           |              | DETA        | PAX          | MIBC*      |             | Grind | Cond.        | Froth | pН         | ORP, mV      |                        |
| Grind                                   | 625          |           |              |             | 5            |            |             | 20    |              |       | 9.0        |              |                        |
| Cu/Ni Rougher No. 1                     |              |           |              |             | 5            | 5          |             |       | 1            | 2     | 9.0        | 25           | -                      |
| Cu/Ni Rougher No. 2                     | 25           |           |              |             | 5            | 5          |             |       | 1            | 2     | 9.0        | 50           |                        |
| Cu/Ni Rougher No. 3                     | 20           |           |              |             | 5            | 5          |             |       | 1            | 2     | 9.0        | 50           | 1                      |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |              |           |              |             |              |            |             |       |              |       |            |              | -                      |
| Regrind (2kg Rod Mill)                  | 300          |           |              | 25          | 2            |            |             | 20    |              |       | 9.3        | 254          | Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 20           |           |              |             |              |            |             |       | 1            | 2     | 9.5        | 223          | Target pH 9.5          |
| Cu/Ni 1st Cleaner No.2                  | 35           |           |              |             | 5            | 2.5        |             |       | 1            | 3+1   | 9.5        | 140          |                        |
| Cu/Ni Cleaner Scav                      | 35           |           |              |             | 2            |            |             |       | 1            | 3     | 9.5        | 143          |                        |
| Cu/Ni Cleaner Scalp                     | 30           |           |              |             | 10           |            |             |       |              | 5     | 9.5        | 142          |                        |
| Cu/Ni 2nd Cleaner                       | 15           |           |              |             | 2            |            |             |       |              | 4     | 9.5        | 138          | -                      |
|                                         |              |           |              |             |              |            |             |       |              |       |            |              |                        |
| Po Rougher No. 1                        | -            |           |              |             | 10           | 5          |             |       | 1            | 3     | 8.5        | 50           |                        |
| Po Rougher No. 2                        | -            |           |              |             | 10           | 5          |             |       | 1            | 5     | 8.2        | 50           |                        |
| Po Rougher No. 3                        | -            |           |              |             | 10           | 2.5        |             |       | 1            | 5     | 7.9        | 50           |                        |
| Po Cleaning on (Po Ro Con 1-3+Cu/N      | li Cleaner S | calp Conc | )            | Add Cu/N    | i Cleaner Sc | alp Conc S | tarting Cyc | le B  |              |       |            |              |                        |
| Regrind (Attrition Mill, Ceramic balls) | 250          |           |              | 25          | 0            |            |             | 10    |              |       | 9.5        | 158          | Check Malvern size     |
| Po 1st Cleaner-1                        | 0            |           |              |             | 4            |            |             |       | 1            | 1     | 9.8        | 158          | Target pH 9.0          |
| Po 1st Cleaner-2                        | 0            |           |              |             | 0            |            |             |       | 1            | 1     | 9.0        | 169          |                        |
| Po 1st Cleaner-3                        | 15           |           |              |             | 0            |            |             |       | 1            | 1     | 9.0        | 161          |                        |
| Po 2nd Cleaner                          | 5            |           |              |             | 0            |            |             |       | 1            | 2     | 9.0        | 105          | Target pH 9.0          |
| Po 3rd Cleaner                          | 5            |           |              |             | 0            |            |             |       | 1            | 2     | 9.0        | 142          |                        |
| Total                                   | 755          |           |              | 50          | 70           | 30         |             |       |              | 40    |            |              | =                      |
| Total                                   | 100          | 0         | 0            | 50          | 10           | 30         | 1           | 1     | 1            | 40    | <u>+ ۲</u> | as required  | J                      |
| Stage                                   | Rougher/S    | cavenger  | Po Rough     | er          | Cu/Ni 1st/2  | nd Cleaner | Po 1st & 2  | nd Cl | 1            |       | Auu        | as required. |                        |
| Flotation Cell                          | 2 kg float c | ell       | 2 kg float o | cell        | 500g/250a    | float cell | 250g float  | cell  | 1            |       |            |              |                        |
| Speed: r.p.m.                           | 1800         |           | 1800         |             | 1500/1200    |            | 1200        |       | 1            |       |            |              |                        |

| Test: LCT-1 | Project: 18559-01      | Date: July 29, 2021                             | Operator: Deepak/Marteen |
|-------------|------------------------|-------------------------------------------------|--------------------------|
| Purpose:    | Based on F-19, LCT-1   |                                                 |                          |
| Procedure:  | As outlined below.     |                                                 |                          |
| Feed:       | 2kg SN Comp -10 mesh   | Freezer\SEC-11C                                 |                          |
| Grind:      | 20 minutes at 65% soli | ds in 2 kg Rod Mill # 3                         | P <sub>80</sub> =        |
| Regrind     | 12 minutes at 50% soli | ds in 2 kg Rod Mill for Cu/Ni R.Conc            | P <sub>80</sub> =        |
|             | 10 minutes at 50% soli | ds in Attrition Mill for Po R.Conc - Ceramic ba | lls P <sub>80</sub> =    |

| Conditions:                             | Cycle        | F         |              |             |              |            |             |       |              |       |       |              | _                      |
|-----------------------------------------|--------------|-----------|--------------|-------------|--------------|------------|-------------|-------|--------------|-------|-------|--------------|------------------------|
|                                         |              |           | Reagents     | added, grar | ns per tonne | 1          |             | -     | Time, minute | es    |       |              |                        |
| Stage                                   | Lime         |           |              | DETA        | PAX          | MIBC*      |             | Grind | Cond.        | Froth | pН    | ORP, mV      |                        |
| Grind                                   | 625          |           |              |             | 5            |            |             | 20    |              |       |       |              |                        |
| Cu/Ni Rougher No. 1                     |              |           |              |             | 5            | 5          |             |       | 1            | 2     | 9.0   | 25           | -                      |
| Cu/Ni Rougher No. 2                     | 20           |           |              |             | 5            | 5          |             |       | 1            | 2     | 9.0   | 50           |                        |
| Cu/Ni Rougher No. 3                     | 20           |           |              |             | 5            | 5          |             |       | 1            | 2     | 9.0   | 50           |                        |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |              |           |              |             |              |            |             |       |              |       |       |              | -                      |
| Regrind (2kg Rod Mill)                  | 300          |           |              | 25          | 2            |            |             | 20    |              |       | 9.3   | 162          | Check Malvern 35-40 um |
| Cu/Ni 1st Cleaner No.1                  | 20           |           |              |             |              |            |             |       | 1            | 2     | 9.5   | 154          | Target pH 9.5          |
| Cu/Ni 1st Cleaner No.2                  | 40           |           |              |             | 5            | 2.5        |             |       | 1            | 3+1   | 9.5   | 134          |                        |
| Cu/Ni Cleaner Scav                      | 15           |           |              |             | 2            |            |             |       | 1            | 3     | 9.5   | 141          | -                      |
| Cu/Ni Cleaner Scalp                     | 40           |           |              |             | 10           |            |             |       |              | 5     | 9.5   | 136          | -                      |
| Cu/Ni 2nd Cleaner                       | 15           |           |              |             | 2            |            |             |       |              | 4     | 9.5   | 128          |                        |
| Po Poughor No. 1                        |              |           |              |             | 10           | 5          |             |       | 1            | 2     | 9.5   | 50           | -                      |
| Po Rougher No. 1                        |              |           |              |             | 10           | 5          |             |       | 1            | 5     | 0.0   | 50           | -                      |
| Po Rougher No. 2                        | -            |           |              |             | 10           | 25         |             |       | 1            | 5     | 8.0   | 50           | -                      |
| Po Cleaning on (Po Ro Con 1-3+Cu/A      | li Cleaner S | caln Conc | )            | Add Cu/N    | i Cleaner Sc | aln Conc S | tarting Cvg | le B  |              |       | 0.0   |              | -                      |
| Regrind (Attrition Mill, Ceramic balls) | 250          |           |              | 25          | 0            |            |             | 10    |              |       | 9.3   | 128          | Check Malvern size     |
| Po 1st Cleaner-1                        | 0            |           |              |             | 4            |            |             |       | 1            | 1     | 9.8   | 128          | Target pH 9.0          |
| Po 1st Cleaner-2                        | 0            |           |              |             | 0            |            |             |       | 1            | 1     | 9.0   | 167          |                        |
| Po 1st Cleaner-3                        | 5            |           |              |             | 0            |            |             |       | 1            | 1     | 9.0   | 175          |                        |
| Po 2nd Cleaner                          | 10           |           |              |             | 0            |            |             |       | 1            | 2     | 9.0   | 169          | Target pH 9.0          |
| Po 3rd Cleaner                          | 5            |           |              |             | 0            |            |             |       | 1            | 2     | 9.0   | 152          |                        |
| Tatal                                   | 740          |           |              | 50          | 70           | 20         |             |       |              | 40    |       |              |                        |
| Totai                                   | /40          | 0         | U            | 50          | /0           | 30         |             | I     | 1            | 40    | × ۵۹۹ | as required  | 1                      |
| Stage                                   | Rougher/S    | cavenger  | Po Rough     | er          | Cu/Ni 1st/2  | nd Cleaner | Po 1st & 2  | nd Cl | 1            |       | Add   | as required. |                        |
| Flotation Cell                          | 2 kg float c | ell       | 2 kg float o | cell        | 500g/250g    | float cell | 250g float  | cell  | 1            |       |       |              |                        |
| Speed: r.p.m.                           | 1800         |           | 1800         |             | 1500/1200    |            | 1200        |       | 1            |       |       |              |                        |

Metallurgical Projection (B-F)

| Product           | N N    | /t   | Assays, % |      |      |      |      |      | % Distribution |      |      |      |      |      |
|-------------------|--------|------|-----------|------|------|------|------|------|----------------|------|------|------|------|------|
| FIOUUCI           | g      | %    | Cu        | Ni   | S    | Ср   | Pn   | Ро   | Cu             | Ni   | S    | Ср   | Pn   | Po   |
| Cu/Ni 2nd Cl Conc | 803.4  | 6.7  | 14.2      | 9.43 | 34.4 | 41.2 | 25.8 | 29.9 | 94.3           | 55.3 | 14.4 | 94.3 | 65.8 | 5.5  |
| Cu/Ni Scalp Tail  | 1411.1 | 11.7 | 0.16      | 1.07 | 32.8 | 0.47 | 1.80 | 83.3 | 1.9            | 11.0 | 24.2 | 1.9  | 8.1  | 26.8 |
| Po 3rd Cl Conc    | 201.2  | 1.7  | 0.78      | 5.54 | 37.1 | 2.27 | 14.2 | 82.1 | 1.3            | 8.1  | 3.9  | 1.3  | 9.1  | 3.8  |
| Comb. Cu/Ni Conc  | 1004.6 | 8.3  | 11.5      | 8.65 | 35.0 | 33.4 | 23.5 | 40.3 | 95.6           | 63.4 | 18.3 | 95.6 | 74.9 | 9.2  |
| Po 1st Cl Tails   | 2682   | 22.2 | 0.09      | 1.02 | 33.6 | 0.26 | 1.62 | 85.7 | 2.0            | 19.9 | 47.0 | 2.0  | 13.8 | 52.3 |
| Po Rougher Tail   | 6976   | 57.8 | 0.01      | 0.11 | 2.90 | 0.03 | 0.14 | 7.37 | 0.6            | 5.8  | 10.5 | 0.6  | 3.2  | 11.7 |
| Head (Calc.)      | 12074  | 100  | 1.00      | 1.14 | 15.9 | 2.91 | 2.61 | 36.4 | 100            | 100  | 100  | 100  | 100  | 100  |
| Head (Dir.)       |        |      | 1.07      | 1.17 | 16.5 | 3.10 | 2.69 | 37.7 |                |      |      |      |      |      |

#### Metallurgical Balance

| Broduct                       | Wei   | ght  |       |      | Assa | ys, % |      |      | % Distribution |     |     |      |      |     |
|-------------------------------|-------|------|-------|------|------|-------|------|------|----------------|-----|-----|------|------|-----|
| Floddet                       | g     | %    | Cu    | Ni   | S    | Ср    | Pn   | Ро   | Cu             | Ni  | S   | Ср   | Pn   | Po  |
| LCT-1 Cu/Ni 2nd Cl Conc - A   | 132.3 | 1.1  | 13.1  | 8.99 | 34.5 | 38.0  | 24.5 | 34.1 | 14.3           | 8.3 | 2.4 | 14.3 | 9.8  | 1.0 |
| LCT-1 Cu/Ni 2nd Cl Conc - B   | 136.4 | 1.1  | 14.2  | 8.93 | 34.1 | 41.2  | 24.4 | 30.3 | 15.9           | 8.5 | 2.4 | 15.9 | 10.1 | 0.9 |
| LCT-1 Cu/Ni 2nd Cl Conc - C   | 139.0 | 1.2  | 13.7  | 10.1 | 34.3 | 39.7  | 27.6 | 29.3 | 15.7           | 9.8 | 2.5 | 15.7 | 11.7 | 0.9 |
| LCT-1 Cu/Ni 2nd Cl Conc - D   | 125.3 | 1.0  | 15.2  | 9.80 | 35.3 | 44.1  | 26.8 | 28.6 | 15.7           | 8.6 | 2.3 | 15.7 | 10.2 | 0.8 |
| LCT-1 Cu/Ni 2nd Cl Conc - E   | 131.1 | 1.1  | 13.1  | 9.12 | 34.2 | 38.0  | 24.9 | 33.0 | 14.1           | 8.4 | 2.3 | 14.1 | 9.9  | 1.0 |
| LCT-1 Cu/Ni 2nd Cl Conc - F   | 137.6 | 1.1  | 14.9  | 9.20 | 34.3 | 43.2  | 25.2 | 28.3 | 16.9           | 8.9 | 2.4 | 16.9 | 10.5 | 0.9 |
| LCT-1 Cu/Ni 2nd Cl Tails-F    | 33.8  | 0.3  | 0.75  | 3.05 | 33.8 | 2.17  | 7.36 | 79.5 | 0.2            | 0.7 | 0.6 | 0.2  | 0.8  | 0.6 |
| LCT-1 Cu/Ni Cl Scav Conc-F    | 28.7  | 0.2  | 3.74  | 7.54 | 34.8 | 10.8  | 20.1 | 63.3 | 0.9            | 1.5 | 0.5 | 0.9  | 1.7  | 0.4 |
| LCT-1 Cu/Ni Cl Scalp Conc-F   | 92.2  | 0.8  | 0.93  | 3.34 | 35.3 | 2.70  | 8.13 | 82.3 | 0.7            | 2.2 | 1.7 | 0.7  | 2.3  | 1.7 |
| LCT-1 Cu/Ni Cl Scalp Tails- A | 89.5  | 0.7  | 0.13  | 1.04 | 27.3 | 0.38  | 1.91 | 68.9 | 0.1            | 0.7 | 1.3 | 0.1  | 0.5  | 1.4 |
| LCT-1 Cu/Ni Cl Scalp Tails- B | 383.8 | 3.2  | 0.12  | 1.10 | 33.1 | 0.35  | 1.88 | 84.0 | 0.4            | 3.0 | 6.6 | 0.4  | 2.2  | 7.3 |
| LCT-1 Cu/Ni Cl Scalp Tails- C | 271.3 | 2.2  | 0.13  | 0.98 | 32.2 | 0.38  | 1.57 | 81.9 | 0.3            | 1.9 | 4.5 | 0.3  | 1.3  | 5.0 |
| LCT-1 Cu/Ni Cl Scalp Tails- D | 224.0 | 1.9  | 0.19  | 1.12 | 34.1 | 0.55  | 1.90 | 86.4 | 0.4            | 1.8 | 4.0 | 0.4  | 1.3  | 4.4 |
| LCT-1 Cu/Ni Cl Scalp Tails- E | 134.9 | 1.1  | 0.24  | 1.10 | 32.1 | 0.70  | 1.92 | 81.1 | 0.3            | 1.0 | 2.2 | 0.3  | 0.8  | 2.5 |
| LCT-1 Cu/Ni Cl Scalp Tails-F  | 161.9 | 1.3  | 0.21  | 1.04 | 32.1 | 0.61  | 1.75 | 81.3 | 0.3            | 1.2 | 2.7 | 0.3  | 0.9  | 3.0 |
| LCT-1 Po 3rd Cl Conc-A        | 17.4  | 0.1  | 0.79  | 6.93 | 36.5 | 2.29  | 18.2 | 77.1 | 0.1            | 0.8 | 0.3 | 0.1  | 1.0  | 0.3 |
| LCT-1 Po 3rd Cl Conc-B        | 35.8  | 0.3  | 0.27  | 2.98 | 36.7 | 0.78  | 7.04 | 88.6 | 0.1            | 0.7 | 0.7 | 0.1  | 0.8  | 0.7 |
| LCT-1 Po 3rd Cl Conc-C        | 42.5  | 0.4  | 0.45  | 4.45 | 37.2 | 1.30  | 11.2 | 85.9 | 0.2            | 1.3 | 0.8 | 0.2  | 1.4  | 0.8 |
| LCT-1 Po 3rd Cl Conc-D        | 36.0  | 0.3  | 0.93  | 6.89 | 37.7 | 2.70  | 18.0 | 80.0 | 0.3            | 1.7 | 0.7 | 0.3  | 2.0  | 0.7 |
| LCT-1 Po 3rd Cl Conc-E        | 27.4  | 0.2  | 0.90  | 5.75 | 37.0 | 2.61  | 14.8 | 81.0 | 0.2            | 1.1 | 0.5 | 0.2  | 1.2  | 0.5 |
| LCT-1 Po 3rd Cl Conc-F        | 26.0  | 0.2  | 1.70  | 8.76 | 36.7 | 4.93  | 23.3 | 70.8 | 0.4            | 1.6 | 0.5 | 0.4  | 1.8  | 0.4 |
| LCT-1 Po 3rd Cl Tails-F       | 32.2  | 0.3  | 0.48  | 3.33 | 36.8 | 1.39  | 8.03 | 87.4 | 0.1            | 0.8 | 0.6 | 0.1  | 0.8  | 0.6 |
| LCT-1 Po 2nd CI Tails-F       | 119.9 | 1.0  | 0.26  | 2.21 | 37.2 | 0.75  | 4.86 | 91.8 | 0.3            | 1.9 | 2.3 | 0.3  | 1.8  | 2.5 |
| LCT-1 Po 1st CI Tails-A       | 383.2 | 3.2  | 0.06  | 0.84 | 33.5 | 0.17  | 1.13 | 85.9 | 0.2            | 2.3 | 6.7 | 0.2  | 1.3  | 7.5 |
| LCT-1 Po 1st CI Tails-B       | 333.0 | 2.8  | 0.04  | 0.85 | 32.4 | 0.10  | 1.20 | 83.0 | 0.1            | 2.0 | 5.6 | 0.1  | 1.2  | 6.3 |
| LCT-1 Po 1st CI Tails-C       | 477.5 | 4.0  | 0.07  | 0.94 | 33.5 | 0.20  | 1.41 | 85.6 | 0.3            | 3.1 | 8.3 | 0.3  | 2.0  | 9.3 |
| LCT-1 Po 1st CI Tails-D       | 476.6 | 3.9  | 0.08  | 0.97 | 34.1 | 0.24  | 1.48 | 87.1 | 0.3            | 3.2 | 8.4 | 0.3  | 2.1  | 9.4 |
| LCT-1 Po 1st CI Tails-E       | 462.3 | 3.8  | 0.13  | 1.17 | 33.5 | 0.38  | 2.06 | 84.9 | 0.5            | 3.8 | 8.0 | 0.5  | 2.9  | 8.9 |
| LCT-1 Po 1st CI Tails-F       | 485.4 | 4.0  | 0.12  | 1.10 | 34.2 | 0.35  | 1.84 | 86.9 | 0.5            | 3.7 | 8.6 | 0.5  | 2.7  | 9.6 |
| LCT-1 Po Ro Tails-A           | 1096  | 9.1  | 0.01  | 0.10 | 1.38 | 0.03  | 0.16 | 3.42 | 0.1            | 0.8 | 0.8 | 0.1  | 0.5  | 0.9 |
| LCT-1 Po Ro Tails-B           | 1084  | 9.0  | <0.01 | 0.09 | 1.83 | 0.01  | 0.12 | 4.64 | 0.0            | 0.7 | 1.0 | 0.0  | 0.4  | 1.1 |
| LCT-1 Po Ro Tails-C           | 1112  | 9.2  | 0.01  | 0.10 | 1.91 | 0.04  | 0.14 | 4.80 | 0.1            | 0.8 | 1.1 | 0.1  | 0.5  | 1.2 |
| LCT-1 Po Ro Tails-D           | 1194  | 9.9  | 0.01  | 0.13 | 3.15 | 0.03  | 0.18 | 7.99 | 0.1            | 1.1 | 1.9 | 0.1  | 0.7  | 2.2 |
| LCT-1 Po Ro Tails-E           | 1230  | 10.2 | 0.01  | 0.13 | 4.02 | 0.04  | 0.15 | 10.3 | 0.1            | 1.1 | 2.6 | 0.1  | 0.6  | 2.9 |
| LCT-1 Po Ro Tails-F           | 1194  | 9.9  | <0.01 | 0.11 | 3.37 | 0.01  | 0.12 | 8.64 | 0.0            | 0.9 | 2.1 | 0.0  | 0.4  | 2.3 |
| Head (Calc.)                  | 12087 | 100  | 1.01  | 1.18 | 16.0 | 2.91  | 2.73 | 36.5 | 100            | 100 | 100 | 100  | 100  | 100 |
| Head (Dir.)                   |       |      | 1.07  | 1.17 | 16.5 | 3.10  | 2.69 | 37.7 |                |     |     |      |      |     |

Use 0.005 for <0.01

# Combined Products

| Broduct               | We | ight |      |      | Assa  | ys, % |      |       |      | Q    | % Distr | ibutio | n    |      |
|-----------------------|----|------|------|------|-------|-------|------|-------|------|------|---------|--------|------|------|
| Floddet               | g  | %    | Cu   | Ni   | S     | Ср    | Pn   | Po    | Cu   | Ni   | S       | Ср     | Pn   | Ро   |
| Cu/Ni 2nd Cl Conc A-F |    | 6.9  | 13.5 | 9.10 | 34.4  | 39.1  | 24.8 | 32.6  | 92.8 | 53.3 | 14.9    | 92.8   | 62.9 | 6.2  |
| Cu/Ni Scalp Tail A-F  |    | 10.5 | 0.16 | 1.07 | 32.4  | 0.46  | 1.81 | 82.3  | 1.7  | 9.5  | 21.3    | 1.7    | 6.9  | 23.6 |
| Cu/Ni 2nd Cl Tails F  |    | 0.3  | 0.75 | 3.05 | 33.8  | 2.17  | 7.36 | 79.5  | 0.2  | 0.7  | 0.6     | 0.2    | 0.8  | 0.6  |
| Cu/Ni Cl Scav Conc F  |    | 0.2  | 3.74 | 7.54 | 34.8  | 10.8  | 20.1 | 63.3  | 0.9  | 1.5  | 0.5     | 0.9    | 1.7  | 0.4  |
| Cu/Ni Cl Scalp Conc F |    | 0.8  | 0.93 | 3.34 | 35.3  | 2.70  | 8.13 | 82.3  | 0.7  | 2.2  | 1.7     | 0.7    | 2.3  | 1.7  |
| Po 3rd Cl Conc A-F    |    | 1.5  | 0.78 | 5.67 | 37.0  | 2.27  | 14.6 | 81.6  | 1.2  | 7.4  | 3.6     | 1.2    | 8.2  | 3.4  |
| Po 1st Cl Tails A-F   |    | 21.7 | 0.09 | 0.99 | 33.6  | 0.25  | 1.55 | 85.7  | 1.8  | 18.2 | 45.6    | 1.8    | 12.3 | 50.9 |
| Po 3rd Cl Tails F     |    | 0.3  | 0.48 | 3.33 | 36.8  | 1.39  | 8.03 | 87.4  | 0.1  | 0.8  | 0.6     | 0.1    | 0.8  | 0.6  |
| Po 2nd Cl Tails F     |    | 1.0  | 0.26 | 2.21 | 37.2  | 0.75  | 4.86 | 91.8  | 0.3  | 1.9  | 2.3     | 0.3    | 1.8  | 2.5  |
| Po Ro Tail A-F        |    | 57.2 | 0.01 | 0.11 | 2.66  | 0.03  | 0.15 | 6.74  | 0.6  | 5.4  | 9.5     | 0.6    | 3.1  | 10.6 |
| Head (calc)           |    | 100  | 1.00 | 1.18 | 16.01 | 2.91  | 2.74 | 36.58 | 100  | 101  | 101     | 100    | 101  | 101  |

Stability

|                             | We    | ight | Assays,% |      |       |  |  |
|-----------------------------|-------|------|----------|------|-------|--|--|
|                             | g     | %    | Cu       | Ni   | S     |  |  |
| Total <u>In</u> All Cycles  | 12087 | 100  | 1.01     | 1.18 | 15.96 |  |  |
| Average <u>In</u> Per Cycle | 2014  | 16.7 |          |      |       |  |  |

| Total Products | We   | ight  | Units out as a %  |       |       |  |  |
|----------------|------|-------|-------------------|-------|-------|--|--|
| Out Per Cycle  |      |       | of Units in/Cycle |       |       |  |  |
|                | g    | Wt %  | Cu                | Ni    | S     |  |  |
| Cycle A        | 1719 | 85.3  | 88.5              | 77.2  | 68.4  |  |  |
| Cycle B        | 1973 | 97.9  | 99.2              | 89.6  | 97.8  |  |  |
| Cycle C        | 2042 | 101.4 | 99.1              | 101.8 | 103.3 |  |  |
| Cycle D        | 2056 | 102.0 | 100.4             | 98.7  | 104.0 |  |  |
| Cycle E        | 1986 | 98.6  | 91.4              | 92.7  | 94.1  |  |  |
| Cycle F        | 2005 | 99.5  | 108.3             | 98.0  | 98.0  |  |  |
|                |      |       |                   |       |       |  |  |
| Average of B-F |      | 99.9  | 99.7              | 96.2  | 99.4  |  |  |

 Cycle Statistics (Least Squares)

 347
 357

 5
 6

 3
 8

 4
 7

 777
 129

 68
 145

 Cycle Statistics (Least Squares)

 0.1
 0.2



| Test: LCT-2 | Project: 18559-01        | <b>Date:</b> August 4, 2021                      | Operator: Deepak, Marteen |
|-------------|--------------------------|--------------------------------------------------|---------------------------|
| Purpose:    | Based on F-19            |                                                  |                           |
| Procedure:  | As outlined below.       |                                                  |                           |
| Feed:       | 2kg SN Comp -10 mesh     | Freezer\SEC-11C                                  |                           |
| Grind:      | 34 minutes at 65% solids | in 2 kg Rod Mill # 3                             | P <sub>80</sub> =         |
| Regrind     | 16 minutes at 50% solids | in 2 kg Rod Mill for Cu/Ni R.Conc                | P <sub>80</sub> =         |
|             | 12 minutos at 50% solida | in Attrition Mill for Do P Cone & Cu/Ni Scolp Co | no Coromio bollo P -      |

|                                          | 12            | minutes at 5               | 0% solids in A | Attrition Mill fo | r Po R.Conc | & Cu/Ni Sca  | lp Conc - C | eramic balls | P <sub>80</sub> = |                                     |
|------------------------------------------|---------------|----------------------------|----------------|-------------------|-------------|--------------|-------------|--------------|-------------------|-------------------------------------|
| Conditions:                              | Global Flow   | sheet                      |                |                   |             |              | 4.0111      |              |                   |                                     |
|                                          | Re            | agents added               | . grams per to | onne              | 1           | Time, minute | es          |              |                   | 7                                   |
| Stage                                    | Lime          | DETA                       | PAX            | MIBC*             | Grind       | Cond.        | Froth       | pН           | ORP, mV           |                                     |
| Grind                                    | 625           |                            | 5              |                   | 34          |              |             | 8.9          | 151               |                                     |
| Cu/Ni Rougher No. 1                      | 25            |                            | 2.5            |                   |             | 1            | 2           | 9.0          | 158               | 1                                   |
| Cu/Ni Rougher No. 2                      | 25            |                            | 5              | 2.5               |             | 1            | 2           | 9.0          | 159               | 1                                   |
| Cu/Ni Rougher No. 3                      | 15            |                            | 5              |                   |             | 1            | 2           | 9.0          | 174               |                                     |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3       |               |                            |                |                   |             |              |             |              |                   | -                                   |
| Regrind (2kg Rod Mill)                   | 225           | 25                         | 2              |                   | 16          |              |             | 9.3          | 172               | Check Malvern Target ~25 um         |
| Cu/Ni 1st Cleaner No.1                   | 5             |                            |                |                   |             | 1            | 2           | 9.5          | 144               | Target pH 9.5                       |
| Cu/Ni 1st Cleaner No.2                   | 40            |                            | 3              |                   |             | 1            | 3           | 9.5          | 143               |                                     |
| Cu/Ni Cleaner Scav                       | 30            |                            | 2              |                   |             | 1            | 3           | 9.5          | 148               | -                                   |
| Cu/Ni Cleaner Scalp                      |               |                            | 10             |                   |             |              | 5           | 9.5          |                   | -                                   |
| Po Rougher No. 1                         | -             |                            | 10             |                   |             | 1            | 3           | natural pH   | 195               | -                                   |
| Po Rougher No. 2                         | _             |                            | 10             | 5                 |             | 1            | 5           | natural pH   | 210               | 1                                   |
| Po Rougher No. 3                         | -             |                            | 10             | 5                 |             | 1            | 5           | natural pH   | 223               |                                     |
| Po Cleaning on (Po Ro Con 1-3+Cu/Ni Clea | ner Scalp Con | c <mark>Add Cu/Ni C</mark> | leaner Scalp   | Conc Startir      | ng Cycle B  |              |             |              |                   |                                     |
| Regrind (Attrition Mill, Ceramic balls)  | 250           | 25                         | 0              |                   | 12          |              |             |              | 90                | Check Malvern size, target 20-25 un |
| Po 1st Cleaner-1                         | 0             |                            | 4              |                   |             | 1            | 1           | 9.0          | 90                | Target pH 9.0                       |
| Po 1st Cleaner-2                         | 0             |                            | 2              |                   |             | 1            | 1           | 9.0          | 132               |                                     |
| Po 1st Cleaner-3                         | 0             |                            | 2              |                   |             | 1            | 1           | 9.0          |                   | -                                   |
| Po 2nd Cleaner                           |               |                            | 1              |                   |             | 1            | 2           | 9.0          |                   | _<br>Target pH 9.0                  |
|                                          |               |                            |                |                   |             |              |             |              |                   | ]                                   |
| Po 3rd Cleaner                           |               |                            | 1              |                   |             | 1            | 2           | 9.0          |                   | -                                   |
| Total                                    | 615           | 50                         | 69.5           | 12.5              |             |              | 39          |              |                   |                                     |
|                                          |               |                            |                |                   |             |              |             |              |                   | * Add as required.                  |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| TARGET WEIGHTS                   | Target,% | Wt. (Dry g.) | Wt. (Wet w.Paper, g) | A      | B      | C      | D      | E      | F      |
|----------------------------------|----------|--------------|----------------------|--------|--------|--------|--------|--------|--------|
| Cu/Ni 1st Clnr Conc (exit)       | 8.2%     | 164          | 206                  | 206.37 | 188.81 | 162.5  | 209.98 | 217.58 | 243.76 |
| Cu/Ni Scalp Tail (exit)          | 7%       | 140          | 178                  | 246.53 | 193.22 | 271.5  | 222.26 | 180.19 | 213.84 |
| Po 3rd Clnr Conc (exit)          | 2%       | 40           | 60                   | 31.64  | 57.78  | 47.06  | 38.86  | 32.64  | 37.16  |
| Po 1st Cl Tails (exit)           |          | 227          | 280                  | 293.85 | 556.06 | 639.76 | 630.12 | 574.66 | 636.76 |
| Po Ro Tail (exit)                |          | 1275         | 1513                 |        |        |        |        |        |        |
| Cu/Ni Ro Conc (intermediate)     | 20%      | 400          | 484                  |        |        |        |        |        |        |
|                                  |          |              |                      |        |        |        |        |        |        |
| Po Ro Conc (Intermediate)        | 18-20%   | 380          | 460                  |        |        |        |        |        |        |
|                                  |          |              |                      |        |        |        |        |        |        |
| Cu/Ni Cl Scalp Conc (cyc F only) |          |              |                      |        |        |        |        |        | 186.48 |

Cu/Ni Ro Conc 1-3&Po Ro Conc 1-3 37-40%



| Test: LCT-2 | Project: 18559-01          | Date: August 4, 2021                             | Operator: Deepak, Marteen            |
|-------------|----------------------------|--------------------------------------------------|--------------------------------------|
| Purpose:    | Based on F-19              |                                                  |                                      |
| Procedure:  | As outlined below.         |                                                  |                                      |
| Feed:       | 2kg SN Comp -10 mesh       | Freezer\SEC-11C                                  |                                      |
| Grind:      | 34 minutes at 65% solids i | n 2 kg Rod Mill # 3                              | P <sub>80</sub> =                    |
| Regrind     | 16 minutes at 50% solids i | n 2 kg Rod Mill for Cu/Ni R.Conc                 | P <sub>80</sub> =                    |
|             | 12 minutes at 50% solids i | n Attrition Mill for Po R.Conc & Cu/Ni Scalp Cor | nc - Ceramic balls P <sub>80</sub> = |

4.5mm

| Conditions:                             | Cycle A          |              |                |             |             |             |              |      |         |                                     |
|-----------------------------------------|------------------|--------------|----------------|-------------|-------------|-------------|--------------|------|---------|-------------------------------------|
|                                         | Re               | agents added | , grams per to | nne         |             | Time, minut | es           |      |         |                                     |
| Stage                                   | Lime             | DETA         | PAX            | MIBC*       | Grind       | Cond.       | Froth        | pН   | ORP, mV |                                     |
| Grind                                   | 625              |              | 5              |             | 34          |             |              |      |         |                                     |
| Cu/Ni Rougher No. 1                     | 50               |              | 2.5            | 5           |             | 1           | 2            | 9.0  | 25      | -                                   |
| Cu/Ni Rougher No. 2                     | 40               |              | 5              | 5           |             | 1           | 2            | 9.0  | 50      |                                     |
| Cu/Ni Rougher No. 3                     | 25               |              | 5              | 5           |             | 1           | 2            | 9.0  | 50      | -                                   |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |                  |              |                |             |             |             |              |      |         | -                                   |
| Regrind (2kg Rod Mill)                  | 225              | 25           | 2              |             | 17.5        |             |              | 8.7  | 92      | Check Malvern Target ~25 um         |
| Cu/Ni 1st Cleaner No.1                  | 50               |              |                |             |             | 1           | 2            | 9.5  | 143     | Target pH 9.5                       |
| Cu/Ni 1st Cleaner No.2                  | 40               |              | 3              |             |             | 1           | 3            | 9.5  | 138     | -                                   |
| Cu/Ni Cleaner Scav                      | 40               |              | 2              |             |             | 1           | 3            | 9.5  | 152     | _                                   |
| Cu/Ni Cleaner Scalp                     | 45               |              | 10             |             |             |             | 5            | 9.5  | 142     | _                                   |
| Po Rougher No. 1                        |                  |              | 10             | 5           |             | 1           | 3            | 8.0  | 75      | -                                   |
| Po Rougher No. 2                        | -                |              | 10             | 5           |             | 1           | 3            | 8.0  | 75      |                                     |
| Po Closning on /Po Po Con 1 2+Cu/Ni C   | loanor Scaln Con |              | Noapor Scalp   | Conc Starti | ing Cyclo P |             |              |      |         | =                                   |
| Regrind (Attrition Mill, Ceramic balls) | 250              | 25           |                |             | 12          |             |              | 10.4 | 63      | Check Malvern size, target 20-25 um |
| Po 1st Cleaner-1                        | 0                | 20           | <u> </u>       |             |             | 1           | 1            | 10.1 | 78      | Target pH 9.0                       |
| Po 1st Cleaner-2                        | 0                |              | 2              |             |             | 1           | 1            | 9.2  | 173     |                                     |
| Po 1st Cleaner-3                        | 10               |              | 2              |             |             | 1           | 1            | 9.0  | 177     | -                                   |
| Po 2nd Cleaner                          | 10               |              | 1              |             |             | 1           | 2            | 9.0  | 167     | <br>Target pH 9.0                   |
|                                         |                  |              |                |             |             |             |              | 0.0  |         |                                     |
| Po 3rd Cleaner                          | 10               |              | 1              |             |             | 1           | 2            | 9.0  | 182     |                                     |
| Total                                   | 795              | 50           | 59.5           | 25          |             |             | 32           |      |         | =                                   |
|                                         | I                |              |                |             |             |             |              |      |         | * Add as required.                  |
| Stage                                   | Rougher/Sca      | venger       | Po Rougher     |             | Cu/Ni 1st/2 | nd Cleaner  | Po 1st & 2n  | d Cl |         |                                     |
| Flotation Cell                          | 2 kg float cell  |              | 2 kg float cel |             | 500g/250g   | float cell  | 250g float c | ell  | _       |                                     |
| Speed: r.p.m.                           | 1800             |              | 1800           |             | 1500/1200   |             | 1200         |      |         |                                     |

| Test: LCT-2 | Project: 18559-01                    | Date: August 4, 2021                        | Operator: Deepak, Marteen       |
|-------------|--------------------------------------|---------------------------------------------|---------------------------------|
| Purpose:    | Based on F-19                        |                                             |                                 |
| Procedure:  | As outlined below.                   |                                             |                                 |
| Feed:       | 2kg SN Comp -10 mesh                 | Freezer\SEC-11C                             |                                 |
| Grind:      | 34 minutes at 65% solids in 2 kg R   | od Mill # 3                                 | P <sub>80</sub> =               |
| Regrind     | 16 minutes at 50% solids in 2 kg R   | od Mill for Cu/Ni R.Conc                    | P <sub>80</sub> =               |
|             | 12 minutes at 50% solids in Attritio | n Mill for Po R.Conc & Cu/Ni Scalp Conc - ( | Ceramic balls P <sub>80</sub> = |

4.5mm

| Conditions:                               | Cycle B        |              |                 |             |             |             |              |       |         |                                    |
|-------------------------------------------|----------------|--------------|-----------------|-------------|-------------|-------------|--------------|-------|---------|------------------------------------|
|                                           | Re             | agents addeo | l, grams per to | nne         |             | Time, minut | es           |       |         | 7                                  |
| Stage                                     | Lime           | DETA         | PAX             | MIBC*       | Grind       | Cond.       | Froth        | pН    | ORP, mV |                                    |
| Grind                                     | 625            |              | 5               |             | 34          |             |              |       |         |                                    |
| Cu/Ni Rougher No. 1                       | 35             |              | 0               | 5           |             | 1           | 2            | 9.0   | 50      | 1                                  |
| Cu/Ni Rougher No. 2                       | 25             |              | 5               | 5           |             | 1           | 2            | 9.0   | 50      | 1                                  |
| Cu/Ni Rougher No. 3                       | 25             |              | 5               | 0           |             | 1           | 2            | 9.0   | 50      |                                    |
| Cu/Ni Rougher No. 4                       | 25             |              | 2.5             | 0           |             | 1           | 2            | 9.0   | 50      | -                                  |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3        |                |              |                 |             |             |             |              |       |         | -                                  |
| Regrind (2kg Rod Mill)                    | 225            | 25           | 2               |             | 20          |             |              | 9.0   | 169     | Check Malvern Target ~25 um        |
| Cu/Ni 1st Cleaner No.1                    | 45             |              |                 |             |             | 1           | 2            | 9.5   | 126     | Target pH 9.5                      |
| Cu/Ni 1st Cleaner No.2                    | 40             |              | 3               |             |             | 1           | 3            | 9.5   | 143     |                                    |
| Cu/Ni Cleaner Scav                        | 45             |              | 2               |             |             | 1           | 3            | 9.5   | 144     | -                                  |
|                                           |                |              |                 |             |             |             |              |       |         | ]                                  |
| Cu/Ni Cleaner Scalp                       | 40             |              | 10              |             |             |             | 5            | 9.5   | 142     | -                                  |
| Po Rougher No. 1                          | -              |              | 10              |             |             | 1           | 3            | 8.2   | 25      | -                                  |
| Po Rougher No. 2                          | -              |              | 10              | 5           |             | 1           | 5            | 8.1   | 50      | 7                                  |
| Po Rougher No. 3                          | -              |              | 10              | 5           |             | 1           | 5            | 8.0   | 50      |                                    |
| Po Cleaning on (Po Ro Con 1-3+Cu/Ni Clean | ner Scalp Con  | Add Cu/Ni (  | Cleaner Scalp   | Conc Starti | ng Cycle B  |             |              |       |         |                                    |
| Regrind (Attrition Mill, Ceramic balls)   | 200            | 25           | 0               |             | 20          |             |              | 9.0   | 168     | Check Malvern size, target 20-25 u |
| Po 1st Cleaner-1                          | 0              |              | 4               |             |             | 1           | 1            | 9.0   | 168     | Target pH 9.0                      |
| Po 1st Cleaner-2                          | 5              |              | 2               |             |             | 1           | 1            | 9.0   | 173     | 7                                  |
| Po 1st Cleaner-3                          | 25             |              | 2               |             |             | 1           | 1            | 9.0   | 173     | -                                  |
| Po 2nd Cleaner                            | 10             |              | 1               |             |             | 1           | 2            | 90    | 158     | Target pH 9.0                      |
|                                           | 10             |              |                 |             |             |             | -            | 0.0   | 100     |                                    |
| Po 3rd Cleaner                            | 10             |              | 1               |             |             | 1           | 2            | 9.0   | 162     |                                    |
| Total                                     | 755            | 50           | 69.5            | 20          |             |             | 41           |       |         | =                                  |
|                                           |                |              |                 |             | 1           | 1           | 1            | 1     |         | <sup>⊥</sup> * Add as required.    |
| Stage                                     | Rougher/Sca    | ivenger      | Po Rougher      |             | Cu/Ni 1st/2 | nd Cleaner  | Po 1st & 2n  | ld Cl | 7       |                                    |
| Flotation Cell                            | 2 kg float cel |              | 2 kg float cel  | I           | 500g/250g   | float cell  | 250g float o | ell   | 7       |                                    |
| Speed: r.p.m.                             | 1800           |              | 1800            |             | 1500/1200   |             | 1200         |       |         |                                    |

| Test: LCT-2 | Project: 18559-01        | <b>Date:</b> August 4, 2021                       | Operator: Deepak, Marteen           |
|-------------|--------------------------|---------------------------------------------------|-------------------------------------|
| Purpose:    | Based on F-19            |                                                   |                                     |
| Procedure:  | As outlined below.       |                                                   |                                     |
| Feed:       | 2kg SN Comp -10 mesh     | Freezer\SEC-11C                                   |                                     |
| Grind:      | 34 minutes at 65% solids | in 2 kg Rod Mill # 3                              | P <sub>80</sub> =                   |
| Regrind     | 16 minutes at 50% solids | n 2 kg Rod Mill for Cu/Ni R.Conc                  | P <sub>80</sub> =                   |
|             | 12 minutes at 50% solids | in Attrition Mill for Po R.Conc & Cu/Ni Scalp Cor | c - Ceramic balls P <sub>80</sub> = |

tion Milli for Po R.Conc & Cu/Ni Scalp Conc - Ceramic 4.5mm

| Conditions:                               | Cycle C       |               |              |              |           |              |          | -   |         | _                                   |
|-------------------------------------------|---------------|---------------|--------------|--------------|-----------|--------------|----------|-----|---------|-------------------------------------|
|                                           | Re            | agents added, | grams per to | nne          | · ·       | Time, minute | s        |     |         |                                     |
| Stage                                     | Lime          | DETA          | PAX          | MIBC*        | Grind     | Cond.        | Froth    | pН  | ORP, mV |                                     |
| Grind                                     | 625           |               | 5            |              | 34        |              |          |     |         | ]                                   |
| Cu/Ni Rougher No. 1                       | 35            |               | 2.5          | 5            |           | 1            | 2        | 9.0 | 25      | 1                                   |
| Cu/Ni Rougher No. 2                       | 25            |               | 5            | 5            |           | 1            | 2        | 9.0 | 25      |                                     |
| Cu/Ni Rougher No. 3                       | 25            |               | 5            | 2.5          |           | 1            | 2        | 9.0 | 50      |                                     |
| Cu/Ni Rougher No. 4                       | 25            |               | 2.5          | 2.5          |           | 1            | 1        | 9.0 | 50      |                                     |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3        |               |               |              |              |           |              |          |     |         | -                                   |
| Regrind (2kg Rod Mill)                    | 250           | 25            | 2            |              | 22.5      |              |          | 8.6 | 183     | Check Malvern Target ~25 um         |
| Cu/Ni 1st Cleaner No.1                    | 80            |               |              |              |           | 1            | 2        | 9.5 | 147     | Target pH 9.5                       |
| Cu/Ni 1st Cleaner No.2                    | 35            |               | 3            |              |           | 1            | 3        | 9.5 | 136     |                                     |
| Cu/Ni 1st Cleaner No.3                    | 65            |               | 2            |              |           | 1            | 2        | 9.5 | 128     |                                     |
| Cu/Ni Cleaner Scav                        | 55            |               | 2            | 2.5          |           | 1            | 3        | 9.5 | 122     |                                     |
|                                           |               |               | 10           |              |           |              |          |     |         | 4                                   |
| Cu/Ni Cleaner Scalp                       | 25            |               | 10           | 2.5          |           |              | 5        | 9.5 | 139     | -                                   |
| Po Rougher No. 1                          | -             |               | 10           |              |           | 1            | 3        | 8.2 | 50      | 1                                   |
| Po Rougher No. 2                          | -             |               | 10           | 5            |           | 1            | 5        | 8.0 | 50      | 1                                   |
| Po Rougher No. 3                          | -             |               | 10           | 5            |           | 1            | 5        | 8.0 | 50      | ]                                   |
| Po Cleaning on (Po Ro Con 1-3+Cu/Ni Clear | ner Scalp Con | Add Cu/Ni C   | leaner Scalp | Conc Startin | g Cycle B |              |          |     |         |                                     |
| Regrind (Attrition Mill, Ceramic balls)   | 200           | 25            | 0            |              | 30        |              |          | 8.8 | 177     | Check Malvern size, target 20-25 um |
| Po 1st Cleaner-1                          | 5             |               | 4            |              |           | 1            | 1        | 9.0 | 178     | Target pH 9.0                       |
| Po 1st Cleaner-2                          | 15            |               | 2            |              |           | 1            | 1        | 9.0 | 160     | ]                                   |
| Po 1st Cleaner-3                          | 20            |               | 2            |              |           | 1            | 1        | 9.0 | 162     |                                     |
| Po 2nd Cleaner                            | 10            |               | 1            |              |           | 1            | 2        | 9.0 | 154     | Target nH 9.0                       |
|                                           |               |               | 1            |              |           |              | <u> </u> | 0.0 |         |                                     |
| Po 3rd Cleaner                            | 5             |               | 1            |              |           | 1            | 2        | 9.0 | 167     |                                     |
| Total                                     | 875           | 50            | 74           | 30           |           |              | 42       |     |         |                                     |
|                                           |               |               |              |              | •         | •            |          |     | •       | * Add as required.                  |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Test: LCT-2 | Project: 18559-01       | <b>Date:</b> August 4, 2021                               | Operator: Deepak, Marteen       |
|-------------|-------------------------|-----------------------------------------------------------|---------------------------------|
| Purpose:    | Based on F-19           |                                                           |                                 |
| Procedure:  | As outlined below.      |                                                           |                                 |
| Feed:       | 2kg SN Comp -10 mesh    | Freezer\SEC-11C                                           |                                 |
| Grind:      | 34 minutes at 65% solid | ds in 2 kg Rod Mill # 3                                   | P <sub>80</sub> =               |
| Regrind     | 16 minutes at 50% solid | ds in 2 kg Rod Mill for Cu/Ni R.Conc                      | P <sub>80</sub> =               |
|             | 12 minutes at 50% solid | ds in Attrition Mill for Po R.Conc & Cu/Ni Scalp Conc - ( | Ceramic balls P <sub>80</sub> = |

|                                           |                |              |                |              |           |              | 4.5mm |     |          |                                     |
|-------------------------------------------|----------------|--------------|----------------|--------------|-----------|--------------|-------|-----|----------|-------------------------------------|
| Conditions:                               | Cycle D        |              |                |              |           |              |       |     |          | _                                   |
|                                           | Rea            | agents added | , grams per to | nne          | -         | Time, minute | s     |     |          |                                     |
| Stage                                     | Lime           | DETA         | PAX            | MIBC*        | Grind     | Cond.        | Froth | рН  | ORP, mV  | _                                   |
| Grind                                     | 625            |              | 5              |              | 34        |              |       |     |          |                                     |
| Cu/Ni Rougher No. 1                       | 25             |              | 2.5            | 5            |           | 1            | 2     | 9.0 | 50       |                                     |
| Cu/Ni Rougher No. 2                       | 25             |              | 5              | 5            |           | 1            | 2     | 9.0 | 50       |                                     |
| Cu/Ni Rougher No. 3                       | 25             |              | 5              | 5            |           | 1            | 2     | 9.0 | 50       |                                     |
| Cu/Ni Rougher No. 4                       | 25             |              | 2.5            |              |           | 1            | 1     | 9.0 | 50       |                                     |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3        |                |              |                |              |           |              |       |     |          |                                     |
| Regrind (2kg Rod Mill)                    | 250            | 25           | 2              |              | 22.5      |              |       | 9.3 | 172      | Check Malvern Target ~25 um         |
| Cu/Ni 1st Cleaner No.1                    | 35             |              | 2              |              |           | 1            | 2     | 9.5 | 127      | Target pH 9.5                       |
| Cu/Ni 1st Cleaner No.2                    | 40             |              | 5              | 2.5          |           | 1            | 3     | 9.5 | 138      |                                     |
| Cu/Ni Cleaner Scav                        | 60             |              | 5              |              |           | 1            | 3     | 9.5 | 135      |                                     |
| Cu/Ni Cleaner Scalp                       | 40             |              | 10             | 2.5          |           |              | 5     | 9.5 | 141      | -                                   |
| ·                                         |                |              |                |              |           |              |       |     |          |                                     |
| Po Rougher No. 1                          | -              |              | 10             |              |           | 1            | 3     | 8.3 | 50       |                                     |
| Po Rougher No. 2                          | -              |              | 10             | 5            |           | 1            | 5     | 8.1 | 50       |                                     |
| Po Rougher No. 3                          | -              |              | 10             | 5            |           | 1            | 5     | 8.0 | 50       |                                     |
| Po Cleaning on (Po Ro Con 1-3+Cu/Ni Clear | ner Scalp Cond | Add Cu/Ni C  | leaner Scalp   | Conc Startin | g Cycle B |              |       |     |          |                                     |
| Regrind (Attrition Mill, Ceramic balls)   | 200            | 25           | 0              |              | 30        |              |       | 9.0 | 105      | Check Malvern size, target 20-25 um |
| Po 1st Cleaner-1                          | 0              |              | 4              |              |           | 1            | 1     | 9.0 | 105      | Target pH 9.0                       |
| Po 1st Cleaner-2                          | 30             |              | 2              |              |           | 1            | 1     | 9.0 | 167      |                                     |
| Po 1st Cleaner-3                          | 25             |              | 2              |              |           | 1            | 1     | 9.0 | 170      |                                     |
| Po 2nd Cleaner                            | 10             |              | 1              |              |           | 1            | 2     | 9.0 | 167      | Target pH 9.0                       |
| Po 3rd Cleaner                            | 5              |              | 1              |              |           | 1            | 2     | 9.0 | 160      |                                     |
|                                           | 705            | 50           | 70             | 30           |           |              | 40    |     | <u> </u> |                                     |
|                                           | 195            |              | 13             |              | I         | I            | 1 40  | l   | _        | <sup>1</sup> * Add as required.     |

| Stage          | Rougher/Scavenger | Po Rougher      | Cu/Ni 1st/2nd Cleaner | Po 1st & 2nd Cl |
|----------------|-------------------|-----------------|-----------------------|-----------------|
| Flotation Cell | 2 kg float cell   | 2 kg float cell | 500g/250g float cell  | 250g float cell |
| Speed: r.p.m.  | 1800              | 1800            | 1500/1200             | 1200            |

| Test: LCT-2 | Project: 18559-01                     | Date: August 4, 2021                                       | Operator: Deepak, Marteen     |  |  |  |  |  |  |  |
|-------------|---------------------------------------|------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|
| Purpose:    | Based on F-19                         |                                                            |                               |  |  |  |  |  |  |  |
| Procedure:  | As outlined below.                    |                                                            |                               |  |  |  |  |  |  |  |
| Feed:       | 2kg SN Comp -10 mesh                  | Freezer\SEC-11C                                            |                               |  |  |  |  |  |  |  |
| Grind:      | 34 minutes at 65% solids in 2 kg Roo  | 1 Mill # 3                                                 | P <sub>80</sub> =             |  |  |  |  |  |  |  |
| Regrind     | 16 minutes at 50% solids in 2 kg Ro   | 16 minutes at 50% solids in 2 kg Rod Mill for Cu/Ni R.Conc |                               |  |  |  |  |  |  |  |
|             | 12 minutes at 50% solids in Attrition | Mill for Po R.Conc & Cu/Ni Scalp Conc - Ce                 | ramic balls P <sub>80</sub> = |  |  |  |  |  |  |  |

4.5mm

| Conditions:                             | Cycle E        |              |                 |             |             |             |              |     |         |                                     |
|-----------------------------------------|----------------|--------------|-----------------|-------------|-------------|-------------|--------------|-----|---------|-------------------------------------|
|                                         | Re             | agents addeo | l, grams per to | onne        |             | Time, minut | tes          |     |         | 7                                   |
| Stage                                   | Lime           | DETA         | PAX             | MIBC*       | Grind       | Cond.       | Froth        | pН  | ORP, mV |                                     |
| Grind                                   | 625            |              | 5               |             | 34          |             |              |     |         | -                                   |
| Cu/Ni Rougher No. 1                     | 35             |              | 2.5             | 5           |             | 1           | 2            | 9.0 | 0       | 1                                   |
| Cu/Ni Rougher No. 2                     | 20             |              | 5               | 5           |             | 1           | 2            | 9.0 | 25      |                                     |
| Cu/Ni Rougher No. 3                     | 35             |              | 5               | 5           |             | 1           | 2            | 9.0 | 25      |                                     |
| Cu/Ni Rougher No. 4                     | 25             |              | 2.5             |             |             | 1           | 1            | 9.0 | 50      | -                                   |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3      |                |              |                 |             |             |             |              |     |         | -                                   |
| Regrind (2kg Rod Mill)                  | 250            | 25           | 2               |             | 22.5        |             |              | 9.0 | 175     | Check Malvern Target ~25 um         |
| Cu/Ni 1st Cleaner No.1                  | 5              |              | 2               |             |             | 1           | 2            | 9.5 | 138     | Target pH 9.5                       |
| Cu/Ni 1st Cleaner No.2                  | 40             |              | 5               | 2.5         |             | 1           | 3            | 9.5 | 142     | -                                   |
| Cu/Ni Cleaner Scav                      | 55             |              | 5               |             |             | 1           | 3            | 9.5 | 141     |                                     |
| Cu/Ni Cleaner Scalp                     | 45             |              | 10              |             |             |             | 5            | 9.5 | 140     |                                     |
| Po Roughor No. 1                        |                |              | 10              |             |             | 1           | 2            | 0.2 | 50      | -                                   |
| Po Rougher No. 2                        |                |              | 10              | 5           |             | 1           | 5            | 8.1 | 50      | -                                   |
| Po Rougher No. 3                        | -              |              | 10              | 5           |             | 1           | 5            | 8.0 | 50      | -                                   |
| Po Cleaning on (Po Ro Con 1-3+Cu/Ni Cle | aner Scalp Con | Add Cu/Ni (  | Cleaner Scalp   | Conc Starti | ng Cycle B  |             |              |     |         | =                                   |
| Regrind (Attrition Mill, Ceramic balls) | 200            | 25           | 0               |             | 30          |             |              | 9.1 | 160     | Check Malvern size, target 20-25 um |
| Po 1st Cleaner-1                        | 0              |              | 4               |             |             | 1           | 1            | 9.0 | 160     | Target pH 9.0                       |
| Po 1st Cleaner-2                        | 15             |              | 2               |             |             | 1           | 1            | 9.0 | 160     |                                     |
| Po 1st Cleaner-3                        | 10             |              | 2               |             |             | 1           | 1            | 9.0 | 166     | -                                   |
| Po 2nd Cleaner                          | 5              |              | 1               |             |             | 1           | 2            | 9.0 | 153     | _<br>Target pH 9.0                  |
| Po 3rd Cleaner                          | 5              |              | 1               |             |             | 1           | 2            | 9.0 | 143     |                                     |
|                                         |                |              |                 |             |             |             |              | 0.0 | 110     | -                                   |
| Total                                   | 745            | 50           | 79              | 27.5        |             |             | 40           |     |         | =                                   |
|                                         |                |              |                 |             |             |             |              |     | _       | * Add as required.                  |
| Stage                                   | Rougher/Sca    | avenger      | Po Rougher      |             | Cu/Ni 1st/2 | nd Cleaner  | Po 1st & 2n  |     | _       |                                     |
|                                         |                | 1            | ∠ Kg IIOat Cel  | 11          | 15009/2509  | noat cell   | 1200 Iluat c | en  | -       |                                     |
| Sheen i'h'iii                           | 1000           | 1            |                 | 1800        |             |             | 1200         |     |         |                                     |

| Test: LCT-2 | Project: 18559-01                     | Date: August 4, 2021                                       | Operator: Deepak, Marteen     |  |  |  |  |  |  |  |
|-------------|---------------------------------------|------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|
| Purpose:    | Based on F-19                         |                                                            |                               |  |  |  |  |  |  |  |
| Procedure:  | As outlined below.                    |                                                            |                               |  |  |  |  |  |  |  |
| Feed:       | 2kg SN Comp -10 mesh                  | Freezer\SEC-11C                                            |                               |  |  |  |  |  |  |  |
| Grind:      | 34 minutes at 65% solids in 2 kg Roo  | 1 Mill # 3                                                 | P <sub>80</sub> =             |  |  |  |  |  |  |  |
| Regrind     | 16 minutes at 50% solids in 2 kg Ro   | 16 minutes at 50% solids in 2 kg Rod Mill for Cu/Ni R.Conc |                               |  |  |  |  |  |  |  |
|             | 12 minutes at 50% solids in Attrition | Mill for Po R.Conc & Cu/Ni Scalp Conc - Ce                 | ramic balls P <sub>80</sub> = |  |  |  |  |  |  |  |

4.5mm

| Conditions:                              | Cycle F        |              |                 |             |             |             |              |      |         |                                     |
|------------------------------------------|----------------|--------------|-----------------|-------------|-------------|-------------|--------------|------|---------|-------------------------------------|
|                                          | Re             | agents addeo | d, grams per to | onne        |             | Time, minut | tes          |      |         | 7                                   |
| Stage                                    | Lime           | DETA         | PAX             | MIBC*       | Grind       | Cond.       | Froth        | pН   | ORP, mV |                                     |
| Grind                                    | 625            |              | 5               |             | 34          |             |              |      |         |                                     |
| Cu/Ni Rougher No. 1                      | 25             |              | 0               | 5           |             | 1           | 2            | 9.0  | 50      | 1                                   |
| Cu/Ni Rougher No. 2                      | 25             |              | 5               | 5           |             | 1           | 2            | 9.0  | 50      |                                     |
| Cu/Ni Rougher No. 3                      | 20             |              | 5               | 0           |             | 1           | 2            | 9.0  | 50      | 7                                   |
| Cu/Ni Rougher No. 4                      | 25             |              | 2.5             | 0           |             | 1           | 1            | 9.0  | 50      | -                                   |
| Cu/Ni Cleaning - Cu/Ni Ro Conc 1-3       |                |              |                 |             |             |             |              |      |         | -                                   |
| Regrind (2kg Rod Mill)                   | 250            | 25           | 2               |             | 22.5        |             |              | 9.0  | 139     | Check Malvern Target ~25 um         |
| Cu/Ni 1st Cleaner No.1                   | 5              |              | 2               |             |             | 1           | 2            | 9.5  | 133     | Target pH 9.5                       |
| Cu/Ni 1st Cleaner No.2                   | 40             |              | 5               | 2.5         |             | 1           | 3            | 9.5  | 129     |                                     |
| Cu/Ni Cleaner Scav                       | 55             |              | 5               |             |             | 1           | 3            | 9.5  | 132     |                                     |
| Cu/Ni Cleaner Scalp                      | 50             |              | 10              |             |             |             | 5            | 9.5  | 133     | -                                   |
|                                          |                |              | 10              |             |             |             |              |      | 50      | -                                   |
| Po Rougher No. 1                         | -              | -            | 10              |             | _           | 1           | 3            | 8.4  | 50      | -                                   |
| Po Rougher No. 2                         |                |              | 10              | 5           | _           | 1           | 5            | 8.2  | 50      | -                                   |
| Po Rougher No. 3                         | -              |              | 10              | 5           |             | 1           | 5            | 8.1  | 50      | _                                   |
| Po Cleaning on (Po Ro Con 1-3+Cu/Ni Clea | aner Scalp Con | Add Cu/Ni    | Cleaner Scalp   | Conc Starti | ing Cycle B |             |              |      |         |                                     |
| Regrind (Attrition Mill, Ceramic balls)  | 200            | 25           | 0               |             | 30          |             |              | 8.8  | 90      | Check Malvern size, target 20-25 um |
| Po 1st Cleaner-1                         | 0              |              | 4               |             |             | 1           | 1            | 9.0  | 101     | Target pH 9.0                       |
| Po 1st Cleaner-2                         | 5              |              | 2               |             |             | 1           | 1            | 9.0  | 132     |                                     |
| Po 1st Cleaner-3                         | 45             |              | 2               |             |             | 1           | 1            | 9.0  | 148     | -                                   |
| Po 2nd Cleaner                           | 5              |              | 1               |             |             | 1           | 2            | 9.0  | 155     | Target pH 9.0                       |
| Po 3rd Cleaner                           | 10             |              | 1               |             |             | 1           | 2            | 9.0  | 156     | -                                   |
|                                          | -              | 1            |                 |             |             |             |              |      |         | 1                                   |
| Total                                    | 760            | 50           | 76.5            | 22.5        |             |             | 40           |      |         |                                     |
|                                          |                |              |                 |             |             |             |              |      | _       | * Add as required.                  |
| Stage                                    | Rougher/Sca    | avenger      | Po Rougher      |             | Cu/Ni 1st/2 | nd Cleaner  | Po 1st & 2n  | d Cl | _       |                                     |
| Flotation Cell                           | 2 kg float cel | I            | 2 kg float ce   | 11          | 500g/250g   | float cell  | 250g float c | ell  | _       |                                     |
| Speed: r.p.m.                            | 1800           |              | 1800            |             | 1500/1200   |             | 1200         |      |         |                                     |

Metallurgical Projection (C-F)

| Broduct             | Wei   | ght  |      |      |      | Assa  | ys, % |      |      |      | % Distribution |      |      |      |      |      |      |  |
|---------------------|-------|------|------|------|------|-------|-------|------|------|------|----------------|------|------|------|------|------|------|--|
| FIGURE              | g     | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Po   | Gn   | Cu             | Ni   | S    | Ср   | Pn   | Ро   | Gn   |  |
| Cu/Ni 1st Cl Conc   | 1062  | 8.7  | 11.8 | 8.45 | 35.1 |       | 34.2  | 22.9 | 40.6 | 2.4  | 92.8           | 61.1 | 18.8 | 92.8 | 71.4 | 9.6  | 0.4  |  |
| Cu/Ni Scalp Tail    | 991   | 8.2  | 0.21 | 1.08 | 34.2 |       | 0.62  | 1.8  | 86.6 | 11.0 | 1.6            | 7.3  | 17.1 | 1.6  | 5.2  | 19.1 | 1.6  |  |
| Po 3rd Cl Conc      | 114   | 0.9  | 1.83 | 6.92 | 36.5 |       | 5.31  | 18.2 | 74.3 | 2.2  | 1.5            | 5.4  | 2.1  | 1.5  | 6.1  | 1.9  | 0.0  |  |
| Combined Cu/Ni Conc | 1176  | 9.7  | 10.8 | 8.30 | 35.3 |       | 31.4  | 22.5 | 43.8 | 2.3  | 94.3           | 66.4 | 20.9 | 94.3 | 77.5 | 11.5 | 0.4  |  |
| Po 1st CI Tails     | 2898  | 23.9 | 0.17 | 1.09 | 34.5 |       | 0.51  | 1.81 | 87.7 | 10.0 | 3.8            | 21.5 | 50.5 | 3.8  | 15.4 | 56.5 | 4.2  |  |
| Po Rougher Tail     | 7075  | 58.3 | 0.01 | 0.10 | 3.22 |       | 0.02  | 0.10 | 8.26 | 91.6 | 0.4            | 4.8  | 11.5 | 0.4  | 2.0  | 13.0 | 93.9 |  |
| Head (Calc.)        | 12140 | 100  | 1.11 | 1.21 | 16.3 |       | 3.22  | 2.81 | 37.1 | 56.9 | 100            | 100  | 100  | 100  | 100  | 100  | 100  |  |
| Head (Dir.)         |       |      | 1.07 | 1.17 | 16.5 |       | 3.10  | 2.69 | 37.7 | 56.5 |                |      |      |      |      |      |      |  |

### Metallurgical Balance

| Broduct                       | Wei   | ght  | Assays, % |           |      |       |      |      |      |      | % Di | stributi | ion |      |      |     |      |
|-------------------------------|-------|------|-----------|-----------|------|-------|------|------|------|------|------|----------|-----|------|------|-----|------|
| Product                       | g     | %    | Cu        | Ni        | S    | Other | Ср   | Pn   | Ро   | Gn   | Cu   | Ni       | S   | Ср   | Pn   | Ро  | Gn   |
| LCT-2 Cu/Ni 1st Cl Conc - A   | 174.5 | 1.4  | 10.8      | 7.84      | 35.5 | 45.9  | 31.3 | 21.1 | 45.6 | 1.9  | 14.6 | 9.6      | 3.1 | 14.6 | 11.2 | 1.8 | 0.0  |
| LCT-2 Cu/Ni 1st Cl Conc - B   | 158.9 | 1.3  | 10.6      | 6.92      | 35.8 | 46.7  | 30.7 | 18.5 | 49.2 | 1.6  | 13.1 | 7.7      | 2.9 | 13.1 | 9.0  | 1.7 | 0.0  |
| LCT-2 Cu/Ni 1st Cl Conc - C   | 135.9 | 1.1  | 15.8      | 9.22      | 34.3 | 40.7  | 45.8 | 25.3 | 25.8 | 3.1  | 16.6 | 8.8      | 2.4 | 16.6 | 10.5 | 0.8 | 0.1  |
| LCT-2 Cu/Ni 1st Cl Conc - D   | 177.4 | 1.5  | 10.8      | 8.10      | 35.5 | 45.6  | 31.3 | 21.9 | 45.0 | 1.8  | 14.9 | 10.1     | 3.2 | 14.9 | 11.8 | 1.8 | 0.0  |
| LCT-2 Cu/Ni 1st Cl Conc - E   | 185.3 | 1.5  | 10.9      | 8.29      | 35.2 | 45.6  | 31.6 | 22.4 | 43.5 | 2.5  | 15.7 | 10.8     | 3.3 | 15.7 | 12.7 | 1.8 | 0.1  |
| LCT-2 Cu/Ni 1st Cl Conc - F   | 209.4 | 1.7  | 10.8      | 8.40      | 35.3 | 45.5  | 31.3 | 22.7 | 43.8 | 2.2  | 17.5 | 12.3     | 3.7 | 17.5 | 14.5 | 2.0 | 0.1  |
| LCT-2 Cu/Ni Cl Scav Conc-F    | 69.9  | 0.6  | 1.19      | 4.06      | 36.5 | 58.3  | 3.45 | 10.1 | 83.0 | 3.4  | 0.6  | 2.0      | 1.3 | 0.6  | 2.2  | 1.3 | 0.0  |
| LCT-2 Cu/Ni Cl Scalp Conc-F   | 143.4 | 1.2  | 0.29      | 1.58      | 36.6 | 61.5  | 0.84 | 3.11 | 91.6 | 4.4  | 0.3  | 1.6      | 2.7 | 0.3  | 1.4  | 2.9 | 0.1  |
| LCT-2 Cu/Ni Cl Scalp Tails- A | 184.8 | 1.5  | 0.15      | 0.89      | 32.5 | 66.5  | 0.43 | 1.31 | 82.9 | 15.4 | 0.2  | 1.2      | 3.0 | 0.2  | 0.7  | 3.4 | 0.4  |
| LCT-2 Cu/Ni Cl Scalp Tails- B | 141.7 | 1.2  | 0.41      | 1.85      | 32.6 | 65.1  | 1.19 | 4.02 | 80.2 | 14.6 | 0.5  | 1.8      | 2.3 | 0.5  | 1.7  | 2.5 | 0.3  |
| LCT-2 Cu/Ni Cl Scalp Tails- C | 205.4 | 1.7  | 0.33      | 1.57      | 35.0 | 63.1  | 0.96 | 3.14 | 87.3 | 8.6  | 0.5  | 2.3      | 3.6 | 0.5  | 2.0  | 4.0 | 0.3  |
| LCT-2 Cu/Ni Cl Scalp Tails- D | 166.6 | 1.4  | 0.17      | 0.88      | 34.2 | 64.8  | 0.49 | 1.22 | 87.3 | 10.9 | 0.2  | 1.0      | 2.9 | 0.2  | 0.6  | 3.2 | 0.3  |
| LCT-2 Cu/Ni Cl Scalp Tails- E | 130.7 | 1.1  | 0.18      | 0.85      | 33.6 | 65.4  | 0.52 | 1.16 | 85.8 | 12.5 | 0.2  | 0.8      | 2.2 | 0.2  | 0.5  | 2.5 | 0.2  |
| LCT-2 Cu/Ni Cl Scalp Tails-F  | 157.8 | 1.3  | 0.13      | 0.84      | 33.5 | 65.5  | 0.38 | 1.13 | 85.7 | 12.8 | 0.2  | 0.9      | 2.7 | 0.2  | 0.5  | 3.0 | 0.3  |
| LCT-2 Po 3rd Cl Conc-A        | 9.2   | 0.1  | 0.29      | 1.62      | 38.4 | 59.7  | 0.84 | 3.16 | 96.3 | -0.3 | 0.0  | 0.1      | 0.2 | 0.0  | 0.1  | 0.2 | 0.0  |
| LCT-2 Po 3rd Cl Conc-B        | 35.8  | 0.3  | 0.63      | 3.84      | 37.4 | 58.1  | 1.83 | 9.45 | 87.4 | 1.3  | 0.2  | 1.0      | 0.7 | 0.2  | 1.0  | 0.7 | 0.0  |
| LCT-2 Po 3rd Cl Conc-C        | 25.5  | 0.2  | 2.18      | 6.73      | 36.8 | 54.3  | 6.32 | 17.7 | 74.7 | 1.3  | 0.4  | 1.2      | 0.5 | 0.4  | 1.4  | 0.4 | 0.0  |
| LCT-2 Po 3rd Cl Conc-D        | 19.9  | 0.2  | 1.74      | 8.22      | 36.3 | 53.7  | 5.04 | 21.8 | 71.0 | 2.1  | 0.3  | 1.1      | 0.4 | 0.3  | 1.3  | 0.3 | 0.0  |
| LCT-2 Po 3rd Cl Conc-E        | 14.2  | 0.1  | 1.81      | 6.98      | 36.7 | 54.5  | 5.25 | 18.3 | 74.8 | 1.6  | 0.2  | 0.7      | 0.3 | 0.2  | 0.8  | 0.2 | 0.0  |
| LCT-2 Po 3rd Cl Conc-F        | 16.5  | 0.1  | 1.42      | 5.60      | 36   | 57.0  | 4.12 | 14.5 | 77.4 | 4.1  | 0.2  | 0.6      | 0.3 | 0.2  | 0.7  | 0.3 | 0.0  |
| LCT-2 Po 3rd Cl Tails-F       | 15.5  | 0.1  | 0.34      | 1.87      | 35.9 | 61.9  | 0.99 | 4.0  | 89.0 | 6.1  | 0.0  | 0.2      | 0.3 | 0.0  | 0.2  | 0.3 | 0.0  |
| LCT-2 Po 2nd CI Tails-F       | 63.7  | 0.5  | 0.23      | 1.41      | 33.6 | 64.8  | 0.67 | 2.74 | 84.3 | 12.3 | 0.1  | 0.6      | 1.1 | 0.1  | 0.5  | 1.2 | 0.1  |
| LCT-2 Po 1st Cl Tails-A       | 238.9 | 2.0  | 0.07      | 0.73      | 34.3 | 64.9  | 0.20 | 0.79 | 88.2 | 10.8 | 0.1  | 1.2      | 4.1 | 0.1  | 0.6  | 4.7 | 0.4  |
| LCT-2 Po 1st Cl Tails-B       | 467.1 | 3.9  | 0.07      | 0.78      | 33.8 | 65.4  | 0.19 | 0.95 | 86.8 | 12.1 | 0.2  | 2.6      | 8.0 | 0.2  | 1.4  | 9.0 | 0.8  |
| LCT-2 Po 1st Cl Tails-C       | 498.4 | 4.1  | 0.17      | 1.01      | 34.7 | 64.1  | 0.49 | 1.57 | 88.3 | 9.6  | 0.7  | 3.5      | 8.7 | 0.7  | 2.4  | 9.7 | 0.7  |
| LCT-2 Po 1st Cl Tails-D       | 489.7 | 4.0  | 0.19      | 1.26      | 34.5 | 64.1  | 0.55 | 2.28 | 87.2 | 10.0 | 0.7  | 4.3      | 8.5 | 0.7  | 3.4  | 9.4 | 0.7  |
| LCT-2 Po 1st Cl Tails-E       | 451.6 | 3.7  | 0.19      | 1.10      | 34.6 | 64.1  | 0.55 | 1.83 | 87.8 | 9.8  | 0.7  | 3.5      | 7.9 | 0.7  | 2.5  | 8.8 | 0.6  |
| LCT-2 Po 1st Cl Tails-F       | 492.4 | 4.1  | 0.15      | 1.00      | 34.4 | 64.5  | 0.43 | 1.55 | 87.6 | 10.4 | 0.6  | 3.5      | 8.6 | 0.6  | 2.3  | 9.5 | 0.7  |
| LCT-2 Po Ro Tails-A           | 1160  | 9.6  | 0.02      | 0.11      | 3.29 | 96.6  | 0.05 | 0.12 | 8.40 | 91.4 | 0.2  | 0.9      | 1.9 | 0.2  | 0.4  | 2.2 | 15.4 |
| LCT-2 Po Ro Tails-B           | 1169  | 9.6  | <0.01     | 0.09      | 2.84 | 97.1  | 0.01 | 0.08 | 7.29 | 92.6 | 0.0  | 0.7      | 1.7 | 0.0  | 0.3  | 1.9 | 15.7 |
| LCT-2 Po Ro Tails-C           | 1174  | 9.7  | <0.01     | 0.09      | 2.99 | 96.9  | 0.01 | 0.09 | 7.68 | 92.2 | 0.0  | 0.8      | 1.8 | 0.0  | 0.3  | 2.0 | 15.7 |
| LCT-2 Po Ro Tails-D           | 1151  | 9.5  | <0.01     | 0.08      | 2.18 | 97.7  | 0.01 | 0.07 | 5.59 | 94.3 | 0.0  | 0.6      | 1.3 | 0.0  | 0.2  | 1.4 | 15.7 |
| LCT-2 Po Ro Tails-E           | 1223  | 10.1 | 0.01      | 0.13      | 4.52 | 95.3  | 0.04 | 0.14 | 11.6 | 88.2 | 0.1  | 1.1      | 2.8 | 0.1  | 0.5  | 3.1 | 15.6 |
| LCT-2 Po Ro Tails-F           | 1170  | 9.6  | <0.01     | 0.09      | 3.11 | 96.8  | 0.01 | 0.08 | 7.99 | 91.9 | 0.0  | 0.8      | 1.8 | 0.0  | 0.3  | 2.1 | 15.6 |
| Head (Calc.)                  | 12126 | 100  | 1.06      | 1.18      | 16.3 | 81.4  | 3.08 | 2.71 | 37.3 | 56.9 | 100  | 100      | 100 | 100  | 100  | 100 | 100  |
| Head (Dir.)                   |       |      | 1.07      | 1.17      | 16.5 | 81.3  | 3.10 | 2.69 | 37.7 | 56.5 |      |          |     |      |      |     |      |
|                               |       |      | Use 0.0   | 05 for <0 | 0.01 |       |      |      |      |      |      |          |     |      |      |     |      |

#### Combined Products

| Product               | We | ight |      |      |      | Assa  | ys, % |      |       |      |      | % Distribution |      |      |      |      |      |  |
|-----------------------|----|------|------|------|------|-------|-------|------|-------|------|------|----------------|------|------|------|------|------|--|
| Fibduct               | g  | %    | Cu   | Ni   | S    | Other | Ср    | Pn   | Ро    | Gn   | Cu   | Ni             | S    | Ср   | Pn   | Ро   | Gn   |  |
| Cu/Ni 1st Cl Conc A-F |    | 8.6  | 11.4 | 8.12 | 35.3 | 45.1  | 33.2  | 22.0 | 42.7  | 2.2  | 92.4 | 59.3           | 18.6 | 92.4 | 69.7 | 9.8  | 0.3  |  |
| Cu/Ni Scalp Tail A-F  |    | 8.1  | 0.23 | 1.15 | 33.6 | 65.0  | 0.66  | 2.02 | 85.0  | 12.3 | 1.8  | 8.0            | 16.8 | 1.8  | 6.1  | 18.6 | 1.8  |  |
| Cu/Ni Cl Scav Conc F  |    | 0.6  | 1.19 | 4.06 | 36.5 | 58.3  | 3.4   | 10.1 | 83.0  | 3.4  | 0.6  | 2.0            | 1.3  | 0.6  | 2.2  | 1.3  | 0.0  |  |
| Cu/Ni Cl Scalp Conc F |    | 1.2  | 0.29 | 1.58 | 36.6 | 61.5  | 0.84  | 3.11 | 91.6  | 4.4  | 0.3  | 1.6            | 2.7  | 0.3  | 1.4  | 2.9  | 0.1  |  |
| Po 3rd Cl Conc A-F    |    | 1.0  | 1.36 | 5.61 | 36.9 | 56.1  | 3.94  | 14.5 | 79.9  | 1.7  | 1.3  | 4.8            | 2.3  | 1.3  | 5.3  | 2.1  | 0.0  |  |
| Po 1st CI Tails A-F   |    | 21.8 | 0.15 | 1.00 | 34.4 | 64.5  | 0.42  | 1.56 | 87.6  | 10.4 | 3.0  | 18.6           | 45.8 | 3.0  | 12.6 | 51.1 | 4.0  |  |
| Po 3rd Cl Tails F     |    | 0.1  | 0.34 | 1.87 | 35.9 | 61.9  | 0.99  | 3.95 | 89.0  | 6.1  | 0.0  | 0.2            | 0.3  | 0.0  | 0.2  | 0.3  | 0.0  |  |
| Po 2nd Cl Tails F     |    | 0.5  | 0.23 | 1.41 | 33.6 | 64.8  | 0.67  | 2.74 | 84.3  | 12.3 | 0.1  | 0.6            | 1.1  | 0.1  | 0.5  | 1.2  | 0.1  |  |
| Po Ro Tail A-F        |    | 58.1 | 0.01 | 0.10 | 3.17 | 96.7  | 0.02  | 0.10 | 8.12  | 91.8 | 0.5  | 4.9            | 11.3 | 0.5  | 2.1  | 12.7 | 93.7 |  |
| Head (calc)           |    | 100  | 1.06 | 1.18 | 16.3 | 81.4  | 3.08  | 2.71 | 37.28 | 56.9 | 100  | 100            | 100  | 100  | 100  | 100  | 100  |  |

Stability

|                             | We    | ight | 4    | 6    |       |
|-----------------------------|-------|------|------|------|-------|
|                             | g     | %    | Cu   | Ni   | S     |
| Total <u>In</u> All Cycles  | 12126 | 100  | 1.06 | 1.18 | 16.33 |
| Average <u>In</u> Per Cycle | 2021  | 16.7 |      |      |       |

| Total Products | We   | ight  | Units out as a % |            |       |  |
|----------------|------|-------|------------------|------------|-------|--|
| Out Per Cycle  |      |       | of L             | Jnits in/C | ycle  |  |
|                | g    | Wt %  | Cu               | s          |       |  |
| Cycle A        | 1768 | 87.5  | 90.8             | 77.9       | 74.5  |  |
| Cycle B        | 1973 | 97.6  | 83.9             | 82.9       | 93.2  |  |
| Cycle C        | 2039 | 100.9 | 109.8            | 99.4       | 101.8 |  |
| Cycle D        | 2004 | 99.2  | 96.7             | 103.3      | 97.4  |  |
| Cycle E        | 2005 | 99.2  | 101.1            | 101.1      | 98.8  |  |
| Cycle F        | 2046 | 101.2 | 111.0            | 108.9      | 102.6 |  |

| Average of B-F | 99.6  | 100.5 | 99.1  | 98.7  |
|----------------|-------|-------|-------|-------|
| Average of C-F | 100.1 | 104.7 | 103.2 | 100.1 |
| Average of D-F | 99.9  | 102.9 | 104.5 | 99.6  |





| Deepak |  |  |  |
|--------|--|--|--|

P<sub>80</sub> =

233

| Test: LCT-3 | Project: 18559-01                    | Date:                                                                 | August 10, 2021 | Operator: |  |  |  |  |  |
|-------------|--------------------------------------|-----------------------------------------------------------------------|-----------------|-----------|--|--|--|--|--|
| Purpose:    | Cu Sep LCT, Based on F-19            |                                                                       |                 |           |  |  |  |  |  |
| Procedure:  | As outlined below.                   |                                                                       |                 |           |  |  |  |  |  |
| Feed:       | 4*~200 g LCT-2 Cu/Ni 1st Cl Conc, 3* | 4*~200 g LCT-2 Cu/Ni 1st Cl Conc, 3*~200 g LCT-1 Cu/N Freezer\SEC-11C |                 |           |  |  |  |  |  |
| Grind:      | 5 minutes at 50% solids i            | n Pebble Mill                                                         |                 |           |  |  |  |  |  |

# \* adjust dosage based on visual

# Cycle A: ~200 g LCT-2 Cu/Ni Conc

|                            | Reagent | s added, grams | per tonne |       | Time, minutes |       |      |         |
|----------------------------|---------|----------------|-----------|-------|---------------|-------|------|---------|
| Stage                      | Lime    | PAX            | MIBC*     | Grind | Cond.         | Froth | pН   | ORP, mV |
| Polish Grind (Pebble mill) | 625     |                |           | 5     |               |       | 11.4 | 50      |
| Cu Ro 1                    | 0       | 0.5            |           |       |               | 2     | 11.5 | 50      |
| Cu Ro 2                    |         | 0.5            |           |       |               | 2     | 11.0 | 50      |
| Cu Ro Scav                 |         | 1              |           |       | 1             | 1     | 10.1 | 101     |
| Cu 1st Cl                  | 100     | 0              |           |       | 1             | 3     | 11.5 | 23      |
| Cu 2nd Cl                  | 100     | 0              |           |       | 1             | 3     | 11.5 | 24      |
| Cu 3rd Cl                  | 105     | 0              |           |       | 1             | 2.5   | 11.5 | 27      |

#### Cycle B: ~200 g LCT-2 Cu/Ni Conc

|                                           | Reagent | s added, grams | per tonne |       | Time, minutes |       |      |         |
|-------------------------------------------|---------|----------------|-----------|-------|---------------|-------|------|---------|
| Stage                                     | Lime    | PAX            | MIBC*     | Grind | Cond.         | Froth | pН   | ORP, mV |
| Polish Grind (Pebble mill)                | 625     |                |           | 5     |               |       | 11.5 | 31      |
| Grind Discharge+Ro Scav Conc+1st Cl Tails |         |                |           |       |               |       |      |         |
| Cu Ro 1                                   | 0       | 1              |           |       |               | 2     | 11.5 | 30      |
| Cu Ro 2                                   |         | 0              |           |       |               | 2     | 11.0 | 56      |
| Cu Ro Scav                                |         | 1              |           |       | 1             | 1     | 10.4 | 84      |
| Ro Conc+2nd CI Tails                      |         |                |           |       |               |       |      |         |
| Cu 1st Cl                                 | 50      | 0              |           |       | 1             | 3     | 11.5 | 26      |
| 1st Cl Conc +3rd Cl Tails                 |         |                |           |       |               |       |      |         |
| Cu 2nd Cl                                 | 40      | 0              |           |       | 1             | 3     | 11.5 | 25      |
| Cu 3rd Cl                                 | 25      | 0              |           |       | 1             | 2.5   | 11.5 | 25      |

# Cycle C: ~200 g LCT-2 Cu/Ni Conc

|                                           | Reagents added, grams per tonne |     |       | Time, minutes |       |       |      |         |
|-------------------------------------------|---------------------------------|-----|-------|---------------|-------|-------|------|---------|
| Stage                                     | Lime                            | PAX | MIBC* | Grind         | Cond. | Froth | pН   | ORP, mV |
| Polish Grind (Pebble mill)                | 625                             |     |       | 5             |       |       | 11.3 | 37      |
| Grind Discharge+Ro Scav Conc+1st Cl Tails |                                 |     |       |               |       |       |      |         |
| Cu Ro 1                                   | 25                              | 1   |       |               |       | 2     | 11.5 | 30      |
| Cu Ro 2                                   |                                 | 0   |       |               |       | 2     | 10.6 | 70      |
| Cu Ro Scav                                |                                 | 1   |       |               | 1     | 1     | 9.9  | 114     |
| Ro Conc+2nd Cl Tails                      |                                 |     |       |               |       |       |      |         |
| Cu 1st Cl                                 | 125                             | 0   |       |               | 1     | 3     | 11.5 | 23      |
| 1st Cl Conc +3rd Cl Tails                 |                                 |     |       |               |       |       |      |         |
| Cu 2nd Cl                                 | 60                              | 0   |       |               | 1     | 3     | 11.5 | 27      |
| Cu 3rd Cl                                 | 60                              | 0   |       |               | 1     | 2.5   | 11.5 | 18      |

18559-01 LCT-3 CuSep-Update v4.xlsx LCT-3 updated 12/13/2021

#### Cycle D: ~200 g LCT-2 Cu/Ni Conc

|                                           | Reagent | s added, grams | per tonne |       | Time, minutes |       |      |         |
|-------------------------------------------|---------|----------------|-----------|-------|---------------|-------|------|---------|
| Stage                                     | Lime    | PAX            | MIBC*     | Grind | Cond.         | Froth | pН   | ORP, mV |
|                                           |         |                |           |       |               |       |      |         |
| Polish Grind (Pebble mill)                | 750     |                |           | 5     |               |       | 11.6 | 29      |
| Grind Discharge+Ro Scav Conc+1st CI Tails |         |                |           |       |               |       |      |         |
| Cu Ro 1                                   | 0       | 0.5            |           |       |               | 2     | 11.5 | 29      |
| Cu Ro 2                                   |         | 0              |           |       |               | 2     | 11.1 | 46      |
|                                           |         |                |           |       |               |       |      |         |
| Cu Ro Scav                                |         | 0.5            |           |       | 1             | 1     | 10.7 | 66      |
| Ro Conc+2nd Cl Tails                      |         |                |           |       |               |       |      |         |
| Cu 1st Cl                                 | 75      | 0              |           |       | 1             | 3     | 11.5 | 23      |
| 1st Cl Conc +3rd Cl Tails                 |         |                |           |       |               |       |      |         |
| Cu 2nd Cl                                 | 75      | 0              |           |       | 1             | 3     | 11.5 | 21      |
|                                           |         |                |           |       |               |       |      |         |
| Cu 3rd Cl                                 | 65      | 0              |           |       | 1             | 2.5   | 11.5 | 20      |

#### Cycle E: ~200 g LCT-1 Cu/Ni Conc

|                                           | Reagent | s added, grams | per tonne | Time, minutes |       |       |      |         |
|-------------------------------------------|---------|----------------|-----------|---------------|-------|-------|------|---------|
| Stage                                     | Lime    | PAX            | MIBC*     | Grind         | Cond. | Froth | pН   | ORP, mV |
|                                           |         |                |           |               |       |       |      |         |
| Polish Grind (Pebble mill)                | 750     |                |           | 5             |       |       | 11.3 | 42      |
| Grind Discharge+Ro Scav Conc+1st Cl Tails |         |                |           |               |       |       |      |         |
| Cu Ro 1                                   | 25      | 0.5            |           |               |       | 2     | 11.5 | 17      |
| Cu Ro 2                                   |         | 0              |           |               |       | 2     | 11.5 | 40      |
| Cu Ro Scav                                |         | 0.5            |           |               | 1     | 1     | 11.5 | 61      |
| Ro Conc+2nd Cl Tails                      |         |                |           |               |       |       |      |         |
| Cu 1st Cl                                 | 65      | 0              |           |               | 1     | 3     | 11.5 | 18      |
| 1st Cl Conc +3rd Cl Tails                 |         |                |           |               |       |       |      |         |
| Cu 2nd Cl                                 | 55      | 0              |           |               | 1     | 3     | 11.5 | 24      |
| Cu 3rd Cl                                 | 70      | 0              |           |               | 1     | 2.5   | 11.5 | 16      |

# Cycle F: ~200 g LCT-1 Cu/Ni Conc

|                                           | Reagents added, grams per tonne |     |       | Time, minutes |       |       |      |         |
|-------------------------------------------|---------------------------------|-----|-------|---------------|-------|-------|------|---------|
| Stage                                     | Lime                            | PAX | MIBC* | Grind         | Cond. | Froth | pН   | ORP, mV |
|                                           |                                 |     |       |               |       |       |      |         |
| Polish Grind (Pebble mill)                | 750                             |     |       | 5             |       |       | 11.6 | 18      |
| Grind Discharge+Ro Scav Conc+1st Cl Tails |                                 |     |       |               |       |       |      |         |
| Cu Ro 1                                   | 0                               | 0.5 |       |               |       | 2     | 11.6 | 14      |
| Cu Ro 2                                   |                                 | 0   |       |               |       | 2     | 11.5 | 30      |
| Cu Ro Scav                                |                                 | 0.5 |       |               | 1     | 1     | 11.3 | 40      |
| Ro Conc+2nd Cl Tails                      |                                 |     |       |               |       |       |      |         |
| Cu 1st Cl                                 | 10                              | 0   |       |               | 1     | 3     | 11.5 | 26      |
| 1st Cl Conc +3rd Cl Tails                 |                                 |     |       |               |       |       |      |         |
| Cu 2nd Cl                                 | 25                              | 0   |       |               | 1     | 3     | 11.5 | 25      |
| Cu 3rd Cl                                 | 50                              | 0   |       |               | 1     | 2.5   | 11.5 | 26      |

# Cycle G: ~200 g LCT-1 Cu/Ni Conc

|                                           | Reagent | s added, grams | per tonne |       | Time, minutes |       |      |         |
|-------------------------------------------|---------|----------------|-----------|-------|---------------|-------|------|---------|
| Stage                                     | Lime    | PAX            | MIBC*     | Grind | Cond.         | Froth | pН   | ORP, mV |
|                                           |         |                |           |       |               |       |      |         |
| Polish Grind (Pebble mill)                | 750     |                |           | 5     |               |       | 11.6 | 25      |
|                                           |         |                |           |       |               |       |      |         |
| Grind Discharge+Ro Scav Conc+1st Cl Tails |         |                |           |       |               |       |      |         |
| Cu Ro 1                                   | 0       | 0.5            |           |       |               | 2     | 11.6 | 25      |
| Cu Ro 2                                   |         | 0              |           |       |               | 2     | 11.4 | 31      |
|                                           |         |                |           |       |               |       |      |         |
| Cu Ro Scav                                |         | 0.5            |           |       | 1             | 1     | 11.2 | 44      |
|                                           |         |                |           |       |               |       |      |         |
| Ro Conc+2nd Cl Tails                      |         |                |           |       |               |       |      |         |
| Cu 1st Cl                                 | 50      | 0              |           |       | 1             | 3     | 11.5 | 26      |
|                                           |         |                |           |       |               |       |      |         |
| 1st Cl Conc +3rd Cl Tails                 |         |                |           |       |               |       |      |         |
| Cu 2nd Cl                                 | 65      | 0              |           |       | 1             | 3     | 11.5 | 24      |
|                                           |         |                |           |       |               |       |      |         |
| Cu 3rd Cl                                 | 75      | 0              |           |       | 1             | 2.5   | 11.5 | 25      |

| TARGET WEIGHTS            | Wt. (D    | ryg.)     | Wt. (Wet  | w.Paper, g) | А      | В      | С      | D      | E      | F      | G      |
|---------------------------|-----------|-----------|-----------|-------------|--------|--------|--------|--------|--------|--------|--------|
|                           | Cycle B-D | Cycle E-G | Cycle B-D | Cycle E-G   |        |        |        |        |        |        |        |
| Cu 3rd Cl Conc (exit)     | 52        | 76        | 74        | 102         | 57.81  | 85.11  | 96.14  | 103.02 | 97.55  | 94.85  | 97.48  |
| Cu Ro Scav Tail (exit)    | 148       | 127       | 187       | 162         | 149.61 | 152.46 | 142.59 | 184.9  | 196.36 | 172.93 | 180.56 |
| Cu 3rd Cl Tails -F (exit) |           |           |           |             |        |        |        |        |        |        | 26.79  |
| Cu 2nd Cl Tails -F (exit) |           |           |           |             |        |        |        |        |        |        | 30.33  |
| Cu 1st Cl Tails -F (exit) |           |           |           |             |        |        |        |        |        |        | 43.44  |
| Cu Ro Scav Conc -F (exit) |           |           |           |             |        |        |        |        |        |        | 19.69  |
| Cu Ro Conc (intermediate) | 65        |           | 89        |             |        |        |        |        |        |        |        |

| Stage          | Rougher/Scavenger | Cu 1st/2nd/3rd Cleaner |  |
|----------------|-------------------|------------------------|--|
| Flotation Cell | 1 kg float cell   | 500g/250g float cell   |  |
| Speed: r.p.m.  |                   | 1500/1200              |  |



Metallurgical Projection (D)

| Broduct            | V    | Vt   |      |      |      | Assays | , %  |      |      |      | %    | 6 Distri | bution |      |      |
|--------------------|------|------|------|------|------|--------|------|------|------|------|------|----------|--------|------|------|
| Floudet            | g    | %    | Cu   | Ni   | S    | Ср     | Pn   | Po   | Gn   | Cu   | Ni   | S        | Ср     | Pn   | Po   |
| Cu 3rd Cl Conc 1-2 | 409  | 30.0 | 28.8 | 1.92 | 34.4 | 83.6   | 5.21 | 8.80 | 2.42 | 79.4 | 7.3  | 30.7     | 79.4   | 7.3  | 6.6  |
| Cu Ro Scav Tail    | 952  | 70.0 | 3.21 | 10.5 | 33.3 | 9.30   | 28.4 | 53.7 | 8.60 | 20.6 | 92.7 | 69.3     | 20.6   | 92.7 | 93.4 |
| Head (Calc.)       | 1361 | 100  | 10.9 | 7.92 | 33.6 | 31.6   | 21.4 | 40.2 | 6.74 | 100  | 100  | 100      | 100    | 100  | 100  |
| Head (Dir.)        |      |      |      |      |      |        |      |      |      |      |      |          |        |      |      |

Metallurgical Balance

| Broduct                    | We   | ight |      |      |      | Assays | , %  |      |     |      | %    | 6 Distr | ibution |      |      |
|----------------------------|------|------|------|------|------|--------|------|------|-----|------|------|---------|---------|------|------|
| Floudet                    | g    | %    | Cu   | Ni   | S    | Ср     | Pn   | Po   | Gn  | Cu   | Ni   | S       | Ср      | Pn   | Po   |
| LCT-3 Cu 3rd Cl Conc-A     | 36.4 | 2.6  | 32.0 | 0.89 | 34.1 | 92.8   | 2.4  | 2.2  | 2.6 | 6.8  | 0.3  | 2.7     | 6.8     | 0.3  | 0.2  |
| LCT-3 Cu 3rd Cl Conc-B     | 61.9 | 4.5  | 29.8 | 1.86 | 34.1 | 86.4   | 5.1  | 5.7  | 2.8 | 10.7 | 1.0  | 4.5     | 10.7    | 1.0  | 0.7  |
| LCT-3 Cu 3rd Cl Conc-C     | 72.5 | 5.3  | 28.4 | 2.40 | 34.7 | 82.3   | 6.5  | 9.7  | 1.5 | 12.0 | 1.5  | 5.4     | 12.0    | 1.5  | 1.5  |
| LCT-3 Cu 3rd Cl Conc1-D    | 33.5 | 2.4  | 30.2 | 1.62 | 34.4 | 87.5   | 4.4  | 6.0  | 2.1 | 5.9  | 0.5  | 2.5     | 5.9     | 0.5  | 0.4  |
| LCT-3 Cu 3rd Cl Conc2-D    | 24.9 | 1.8  | 27.0 | 2.32 | 34.3 | 78.3   | 6.3  | 12.6 | 2.9 | 3.9  | 0.5  | 1.8     | 3.9     | 0.5  | 0.7  |
| LCT-3 Cu 3rd Cl Conc3-D    | 6.9  | 0.5  | 21.1 | 3.89 | 34.7 | 61.2   | 10.4 | 25.6 | 2.8 | 0.8  | 0.2  | 0.5     | 0.8     | 0.2  | 0.4  |
| LCT-3 Cu 3rd Cl Conc-E     | 74.7 | 5.4  | 30.8 | 0.71 | 34.2 | 89.3   | 1.9  | 6.1  | 2.8 | 13.4 | 0.4  | 5.5     | 13.4    | 0.4  | 0.9  |
| LCT-3 Cu 3rd Cl Conc-F     | 72.9 | 5.3  | 30.6 | 0.57 | 34.5 | 88.7   | 1.47 | 7.7  | 2.1 | 13.0 | 0.3  | 5.4     | 13.0    | 0.3  | 1.2  |
| LCT-3 Cu 3rd Cl Conc-G     | 75.2 | 5.5  | 31.2 | 0.53 | 34.4 | 90.4   | 1.39 | 5.9  | 2.2 | 13.6 | 0.3  | 5.5     | 13.6    | 0.3  | 0.9  |
| LCT-3 Cu 3rd Cl Tail-G     | 9.4  | 0.7  | 18.1 | 2.81 | 33.3 | 52.5   | 7.35 | 32.5 | 7.7 | 1.0  | 0.2  | 0.7     | 1.0     | 0.2  | 0.6  |
| LCT-3 Cu 2nd Cl Tail-G     | 12.1 | 0.9  | 11.7 | 5.93 | 32.7 | 33.9   | 15.9 | 40.5 | 9.7 | 0.8  | 0.6  | 0.8     | 0.8     | 0.6  | 1.0  |
| LCT-3 Cu 1st Cl Tail-G     | 22.8 | 1.7  | 7.29 | 10.3 | 33.1 | 21.1   | 28.0 | 42.8 | 8.1 | 1.0  | 2.0  | 1.6     | 1.0     | 2.0  | 2.0  |
| LCT-3 Cu Ro Scav Conc-G    | 4.1  | 0.3  | 15.2 | 3.85 | 34.4 | 44.1   | 10.1 | 40.6 | 5.2 | 0.4  | 0.1  | 0.3     | 0.4     | 0.1  | 0.3  |
| LCT-3 Cu Ro Scav Conc-D    | 8.7  | 0.6  | 12.9 | 7.33 | 33.6 | 37.4   | 19.9 | 36.3 | 6.5 | 0.7  | 0.5  | 0.6     | 0.7     | 0.5  | 0.7  |
| LCT-3 Cu Ro Scav Tail-A    | 107  | 7.7  | 3.64 | 9.77 | 33.5 | 10.6   | 26.4 | 54.8 | 8.3 | 2.3  | 8.8  | 7.7     | 2.3     | 8.7  | 12.2 |
| LCT-3 Cu Ro Scav Tail-B    | 110  | 8.0  | 3.15 | 10.0 | 33.5 | 9.13   | 27.0 | 55.6 | 8.3 | 2.0  | 9.2  | 7.9     | 2.0     | 9.1  | 12.7 |
| LCT-3 Cu Ro Scav Tail-C    | 102  | 7.4  | 2.39 | 10.0 | 33.3 | 6.93   | 27.0 | 57.1 | 9.0 | 1.4  | 8.5  | 7.3     | 1.4     | 8.5  | 12.1 |
| LCT-3 Cu Ro Scav Tail-D    | 136  | 9.9  | 3.21 | 10.5 | 33.3 | 9.30   | 28.4 | 53.7 | 8.6 | 2.5  | 12.0 | 9.7     | 2.5     | 11.9 | 15.2 |
| LCT-3 Cu Ro Scav Tail-E    | 147  | 10.6 | 3.14 | 15.5 | 33.5 | 9.10   | 42.5 | 42.3 | 6.1 | 2.7  | 19.1 | 10.5    | 2.7     | 19.2 | 12.9 |
| LCT-3 Cu Ro Scav Tail-F    | 128  | 9.3  | 3.13 | 15.7 | 33.8 | 9.07   | 43.0 | 42.7 | 5.2 | 2.3  | 16.8 | 9.3     | 2.3     | 16.9 | 11.3 |
| LCT-3 Cu Ro Scav Tail-G    | 135  | 9.8  | 3.70 | 15.2 | 33.9 | 10.7   | 41.6 | 42.6 | 5.0 | 2.9  | 17.2 | 9.8     | 2.9     | 17.3 | 11.9 |
| Head (Calc.) A-D           | 699  | 50.7 | 12.0 | 7.31 | 33.7 | 34.9   | 19.8 | 38.9 | 6.4 | 49.0 | 42.9 | 50.6    | 49.0    | 42.6 | 56.7 |
| Head (Calc.) E-G           | 680  | 49.3 | 12.9 | 10.0 | 33.9 | 37.4   | 27.4 | 30.6 | 4.7 | 51.0 | 57.1 | 49.4    | 51.0    | 57.4 | 43.3 |
| Head (Calc.) A-G           | 1379 | 100  | 12.5 | 8.64 | 33.8 | 36.2   | 23.5 | 34.8 | 5.5 | 100  | 100  | 100     | 100     | 100  | 100  |
| Head (Exp.) A-G            | 1398 |      |      |      |      |        |      |      |     |      |      |         |         |      |      |
| LCT-3 Cu 3rd Cl Conc D 1-3 | 65.3 | 4.7  | 28.0 | 2.13 | 34.4 | 81.2   | 5.8  | 10.6 | 2.5 | 10.6 | 1.2  | 4.8     | 10.6    | 1.2  | 1.4  |

# Combined Products (A-D)

| Broduct                | Wei   | ght  |      |      |      | Assays | , %  |      |     |      | %    | 6 Distri | bution |      |      |
|------------------------|-------|------|------|------|------|--------|------|------|-----|------|------|----------|--------|------|------|
| Floduct                | g     | %    | Cu   | Ni   | S    | Ср     | Pn   | Po   | Gn  | Cu   | Ni   | S        | Ср     | Pn   | Ро   |
| Cu 3rd Cl Conc A-D     | 236.1 | 33.8 | 29.2 | 1.95 | 34.4 | 84.7   | 5.3  | 7.7  | 2.3 | 81.9 | 9.0  | 34.4     | 81.9   | 9.1  | 6.7  |
| Cu 3rd Cl Scav Conc -D | 8.7   | 1.2  | 12.9 | 7.33 | 33.6 | 37.4   | 19.9 | 36.3 | 6.5 | 1.3  | 1.2  | 1.2      | 1.3    | 1.2  | 1.2  |
| Cu Ro Scav Tails A-D   | 454.4 | 65.0 | 3.11 | 10.1 | 33.4 | 9.0    | 27.3 | 55.2 | 8.5 | 16.8 | 89.7 | 64.4     | 16.8   | 89.7 | 92.1 |
| Head (calc) A-D        | 699.2 | 100  | 12.0 | 7.31 | 33.7 | 34.9   | 19.8 | 38.9 | 6.4 | 100  | 100  | 100      | 100    | 100  | 100  |

Stability

|                             | We  | ight  | A    | ssays, | %    |
|-----------------------------|-----|-------|------|--------|------|
|                             | g   | %     | Cu   | Ni     | S    |
| Total <u>In</u> All Cycles  | 699 | 100.0 | 12.0 | 7.31   | 33.7 |
| Average <u>In</u> Per Cycle | 175 | 25.0  |      |        |      |

| Total Products | We  | ight  | Units | s out as  | a %     |  |
|----------------|-----|-------|-------|-----------|---------|--|
| Out Per Cycle  |     |       | of U  | nits in/0 | Cycle   |  |
|                | g   | Wt %  | Cu    | Ni        | S       |  |
| Cycle A        | 143 | 81.9  | 73.8  | 84.2      | 81.7    |  |
| Cycle B        | 172 | 98.2  | 104.0 | 94.9      | 98.2    |  |
| Cycle C        | 174 | 99.7  | 109.3 | 93.3      | 100.2   |  |
| Cycle D        | 201 | 115.2 | 107.6 | 122.6     | õ 114.9 |  |
|                |     |       |       |           |         |  |

| Cycle | Statistic | cs (Lea | st Squares) |
|-------|-----------|---------|-------------|
| 1015  | 67        | 1082    |             |
| 19    | 33        | 53      |             |
| 87    | 92        | 179     |             |
| 288   | 57        | 345     |             |
| Cycle | Statistic | cs (Lea | st Squares) |
| 67.6  | 6.78      | 74.4    |             |



Metallurgical Projection (F-G)

| Broduct         | V    | Vt   |      |      | 4    | Assays | , %  |      |      |      | q    | % Distr | ibution |      |      |
|-----------------|------|------|------|------|------|--------|------|------|------|------|------|---------|---------|------|------|
| FIGURE          | g    | %    | Cu   | Ni   | S    | Ср     | Pn   | Po   | Gn   | Cu   | Ni   | S       | Ср      | Pn   | Po   |
| Cu 3rd Cl Conc  | 518  | 36.1 | 30.9 | 0.55 | 34.4 | 89.6   | 1.43 | 6.82 | 2.17 | 83.6 | 2.0  | 36.5    | 83.6    | 1.9  | 8.3  |
| Cu Ro Scav Tail | 917  | 63.9 | 3.42 | 15.4 | 33.9 | 9.92   | 42.3 | 42.6 | 5.13 | 16.4 | 98.0 | 63.5    | 16.4    | 98.1 | 91.7 |
| Head (Calc.)    | 1436 | 100  | 13.3 | 10.1 | 34.1 | 38.7   | 27.5 | 29.7 | 4.06 | 100  | 100  | 100     | 100     | 100  | 100  |
| Head (Dir.)     |      |      |      |      |      |        |      |      |      |      |      |         |         |      |      |

Metallurgical Balance

| Product                    | v    | Vt   |      |      |      | Assays | , %  |      |     |      | c.   | % Distr | ibution |      |      |
|----------------------------|------|------|------|------|------|--------|------|------|-----|------|------|---------|---------|------|------|
| Troduct                    | g    | %    | Cu   | Ni   | S    | Ср     | Pn   | Ро   | Gn  | Cu   | Ni   | S       | Ср      | Pn   | Po   |
| LCT-3 Cu 3rd Cl Conc-A     | 36.4 | 2.6  | 32.0 | 0.89 | 34.1 | 92.8   | 2.4  | 2.2  | 2.6 | 6.8  | 0.3  | 2.7     | 6.8     | 0.3  | 0.2  |
| LCT-3 Cu 3rd Cl Conc-B     | 61.9 | 4.5  | 29.8 | 1.86 | 34.1 | 86.4   | 5.1  | 5.7  | 2.8 | 10.7 | 1.0  | 4.5     | 10.7    | 1.0  | 0.7  |
| LCT-3 Cu 3rd Cl Conc-C     | 72.5 | 5.3  | 28.4 | 2.40 | 34.7 | 82.3   | 6.5  | 9.7  | 1.5 | 12.0 | 1.5  | 5.4     | 12.0    | 1.5  | 1.5  |
| LCT-3 Cu 3rd Cl Conc1-D    | 33.5 | 2.4  | 30.2 | 1.62 | 34.4 | 87.5   | 4.4  | 6.0  | 2.1 | 5.9  | 0.5  | 2.5     | 5.9     | 0.5  | 0.4  |
| LCT-3 Cu 3rd Cl Conc2-D    | 24.9 | 1.8  | 27.0 | 2.32 | 34.3 | 78.3   | 6.3  | 12.6 | 2.9 | 3.9  | 0.5  | 1.8     | 3.9     | 0.5  | 0.7  |
| LCT-3 Cu 3rd Cl Conc3-D    | 6.9  | 0.5  | 21.1 | 3.89 | 34.7 | 61.2   | 10.4 | 25.6 | 2.8 | 0.8  | 0.2  | 0.5     | 0.8     | 0.2  | 0.4  |
| LCT-3 Cu 3rd Cl Conc-E     | 74.7 | 5.4  | 30.8 | 0.71 | 34.2 | 89.3   | 1.9  | 6.1  | 2.8 | 13.4 | 0.4  | 5.5     | 13.4    | 0.4  | 0.9  |
| LCT-3 Cu 3rd Cl Conc-F     | 72.9 | 5.3  | 30.6 | 0.57 | 34.5 | 88.7   | 1.47 | 7.7  | 2.1 | 13.0 | 0.3  | 5.4     | 13.0    | 0.3  | 1.2  |
| LCT-3 Cu 3rd Cl Conc-G     | 75.2 | 5.5  | 31.2 | 0.53 | 34.4 | 90.4   | 1.39 | 5.9  | 2.2 | 13.6 | 0.3  | 5.5     | 13.6    | 0.3  | 0.9  |
| LCT-3 Cu 3rd Cl Tail-G     | 9.4  | 0.7  | 18.1 | 2.81 | 33.3 | 52.5   | 7.35 | 32.5 | 7.7 | 1.0  | 0.2  | 0.7     | 1.0     | 0.2  | 0.6  |
| LCT-3 Cu 2nd Cl Tail-G     | 12.1 | 0.9  | 11.7 | 5.93 | 32.7 | 33.9   | 15.9 | 40.5 | 9.7 | 0.8  | 0.6  | 0.8     | 0.8     | 0.6  | 1.0  |
| LCT-3 Cu 1st Cl Tail-G     | 22.8 | 1.7  | 7.29 | 10.3 | 33.1 | 21.1   | 28.0 | 42.8 | 8.1 | 1.0  | 2.0  | 1.6     | 1.0     | 2.0  | 2.0  |
| LCT-3 Cu Ro Scav Conc-G    | 4.1  | 0.3  | 15.2 | 3.85 | 34.4 | 44.1   | 10.1 | 40.6 | 5.2 | 0.4  | 0.1  | 0.3     | 0.4     | 0.1  | 0.3  |
| LCT-3 Cu Ro Scav Conc-D    | 8.7  | 0.6  | 12.9 | 7.33 | 33.6 | 37.4   | 19.9 | 36.3 | 6.5 | 0.7  | 0.5  | 0.6     | 0.7     | 0.5  | 0.7  |
| LCT-3 Cu Ro Scav Tail-A    | 107  | 7.7  | 3.64 | 9.77 | 33.5 | 10.6   | 26.4 | 54.8 | 8.3 | 2.3  | 8.8  | 7.7     | 2.3     | 8.7  | 12.2 |
| LCT-3 Cu Ro Scav Tail-B    | 110  | 8.0  | 3.15 | 10.0 | 33.5 | 9.13   | 27.0 | 55.6 | 8.3 | 2.0  | 9.2  | 7.9     | 2.0     | 9.1  | 12.7 |
| LCT-3 Cu Ro Scav Tail-C    | 102  | 7.4  | 2.39 | 10.0 | 33.3 | 6.93   | 27.0 | 57.1 | 9.0 | 1.4  | 8.5  | 7.3     | 1.4     | 8.5  | 12.1 |
| LCT-3 Cu Ro Scav Tail-D    | 136  | 9.9  | 3.21 | 10.5 | 33.3 | 9.30   | 28.4 | 53.7 | 8.6 | 2.5  | 12.0 | 9.7     | 2.5     | 11.9 | 15.2 |
| LCT-3 Cu Ro Scav Tail-E    | 147  | 10.6 | 3.14 | 15.5 | 33.5 | 9.10   | 42.5 | 42.3 | 6.1 | 2.7  | 19.1 | 10.5    | 2.7     | 19.2 | 12.9 |
| LCT-3 Cu Ro Scav Tail-F    | 128  | 9.3  | 3.13 | 15.7 | 33.8 | 9.07   | 43.0 | 42.7 | 5.2 | 2.3  | 16.8 | 9.3     | 2.3     | 16.9 | 11.3 |
| LCT-3 Cu Ro Scav Tail-G    | 135  | 9.8  | 3.70 | 15.2 | 33.9 | 10.7   | 41.6 | 42.6 | 5.0 | 2.9  | 17.2 | 9.8     | 2.9     | 17.3 | 11.9 |
| Head (Calc.) A-D           | 699  | 50.7 | 12.0 | 7.31 | 33.7 | 34.9   | 19.8 | 38.9 | 6.4 | 49.0 | 42.9 | 50.6    | 49.0    | 42.6 | 56.7 |
| Head (Calc.) E-G           | 680  | 49.3 | 12.9 | 10.0 | 33.9 | 37.4   | 27.4 | 30.6 | 4.7 | 51.0 | 57.1 | 49.4    | 51.0    | 57.4 | 43.3 |
| Head (Calc.) A-G           | 1379 | 100  | 12.5 | 8.64 | 33.8 | 36.2   | 23.5 | 34.8 | 5.5 | 100  | 100  | 100     | 100     | 100  | 100  |
| Head (Exp.) A-G            | 1398 |      |      |      |      |        |      |      |     |      |      |         |         |      |      |
| LCT-3 Cu 3rd Cl Conc D 1-3 | 65.3 | 4.7  | 28.0 | 2.13 | 34.4 | 81.2   | 5.8  | 10.6 | 2.5 | 10.6 | 1.2  | 4.8     | 10.6    | 1.2  | 1.4  |

Combined Products (E-G)

| Product              | We   | ight |      |      | ŀ    | Assays | , %  |      |     |      | 9    | % Distr | ibution |      |      |
|----------------------|------|------|------|------|------|--------|------|------|-----|------|------|---------|---------|------|------|
| Floddet              | g    | %    | Cu   | Ni   | S    | Ср     | Pn   | Ро   | Gn  | Cu   | Ni   | S       | Ср      | Pn   | Po   |
| Cu 3rd Cl Conc E-G   | 223  | 32.8 | 30.9 | 0.60 | 34.4 | 89.5   | 1.6  | 6.6  | 2.4 | 78.4 | 2.0  | 33.2    | 78.4    | 1.9  | 7.0  |
| Cu 3rd Cl Tails - G  | 9.4  | 1.4  | 18.1 | 2.81 | 33.3 | 52.5   | 7.3  | 32.5 | 7.7 | 1.9  | 0.4  | 1.4     | 1.9     | 0.4  | 1.5  |
| Cu 2nd Cl Tails - G  | 12.1 | 1.8  | 11.7 | 5.93 | 32.7 | 33.9   | 15.9 | 40.5 | 9.7 | 1.6  | 1.1  | 1.7     | 1.6     | 1.0  | 2.4  |
| Cu 1st Cl Tails - G  | 22.8 | 3.4  | 7.29 | 10.3 | 33.1 | 21.1   | 28.0 | 42.8 | 8.1 | 1.9  | 3.5  | 3.3     | 1.9     | 3.4  | 4.7  |
| Cu Ro Scav Conc - G  | 4.1  | 0.6  | 15.2 | 3.85 | 34.4 | 44.1   | 10.1 | 40.6 | 5.2 | 0.7  | 0.2  | 0.6     | 0.7     | 0.2  | 0.8  |
| Cu Ro Scav Tails E-G | 409  | 60.1 | 3.32 | 15.5 | 33.7 | 9.6    | 42.4 | 42.5 | 5.5 | 15.5 | 92.9 | 59.8    | 15.5    | 93.0 | 83.6 |
| Head (calc) E-G      | 680  | 100  | 12.9 | 10.0 | 33.9 | 37.4   | 27.4 | 30.6 | 4.7 | 100  | 100  | 100     | 100     | 100  | 100  |

### Stability

Average of E-G

|                             | We  | ight  | A    | ssays, | %    |
|-----------------------------|-----|-------|------|--------|------|
|                             | g   | %     | Cu   | Ni     | s    |
| Total <u>In</u> All Cycles  | 680 | 100.0 | 12.9 | 10.0   | 33.9 |
| Average <u>In</u> Per Cycle | 227 | 33.3  |      |        |      |

| Total Products | Weight |      | Units out as a %  |       |      |
|----------------|--------|------|-------------------|-------|------|
| Out Per Cycle  |        |      | of Units in/Cycle |       |      |
|                | g      | Wt % | Cu                | Ni    | S    |
| Cycle E        | 221    | 97.6 | 94.4              | 102.5 | 97.2 |
| Cycle F        | 201    | 88.5 | 89.9              | 90.2  | 88.9 |
| Cycle G        | 210    | 92.5 | 97.2              | 91.9  | 93.0 |

92.9

93.8

94.9 93.0

| Cycle Statistics (Least Squares) |      |       |  |  |  |  |
|----------------------------------|------|-------|--|--|--|--|
| 37                               | 11   | 48    |  |  |  |  |
| 235                              | 2    | 237   |  |  |  |  |
| 64                               | 22   | 86    |  |  |  |  |
| Cycle Statistics (Least Squares) |      |       |  |  |  |  |
| 88.6                             | 0.93 | 89.5  |  |  |  |  |
| 131.6                            | 9.4  | 141.1 |  |  |  |  |





# **QEMSCAN DATA**

prepared for:

# **North American Nickel**

Project 18559-01 MI5012-JUL21

July 27, 2021



Margot Aldis/Chris Gunning Mineralogist/Senior Mineralogist

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy) (METH# 8.11.1) used by SGS Minerals Services

SGS Canada

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel. (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA) North American Nickel 18559-01 MI5012-JUL21

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



| Sample        | F8 Cu/Ni 1st Cleaner<br>Tails | F8 Po 1st Cleaner Tails |  |
|---------------|-------------------------------|-------------------------|--|
| Element       | -300/+3um                     | -300/+3um               |  |
| S (QEMSCAN)   | 36.21                         | 35.70                   |  |
| S (Chemical)  | 34.90                         | 33.00                   |  |
| Ni (QEMSCAN)  | 1.25                          | 0.72                    |  |
| Ni (Chemical) | 1.12                          | 0.69                    |  |
| Cu (QEMSCAN)  | 0.01                          | 0.03                    |  |
| Cu (Chemical) | 0.09                          | 0.08                    |  |


High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# <u>Modals</u>

| Survey                     |                    | 18559-01 / MI5012-JUL21    |                         |  |
|----------------------------|--------------------|----------------------------|-------------------------|--|
| Project                    |                    | North American Nickel      |                         |  |
| Sample                     |                    | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |  |
| Fraction                   |                    | -300/+3um                  | -300/+3um               |  |
| Mass Size Distribution (%) |                    | 100.0                      | 100.0                   |  |
| Calculated                 | ESD Particle Size  | 17                         | 16                      |  |
|                            |                    | Sample                     | Sample                  |  |
| Mineral                    | Pyrrhotite         | 90.10                      | 89.88                   |  |
| Mass (%)                   | Chalcopyrite       | 0.04                       | 0.07                    |  |
|                            | Pentlandite        | 2.31                       | 0.78                    |  |
|                            | Pyrite/Marcasite   | 0.16                       | 0.02                    |  |
|                            | Other_Sulphides    | 0.03                       | 0.10                    |  |
|                            | Fe-Oxides          | 1.95                       | 3.62                    |  |
|                            | Other_Oxides       | 0.01                       | 0.01                    |  |
|                            | Chlorite/Clays     | 1.32                       | 1.27                    |  |
|                            | Biotite            | 0.15                       | 0.19                    |  |
|                            | Talc               | 0.06                       | 0.07                    |  |
|                            | Quartz             | 0.69                       | 0.50                    |  |
|                            | Plagioclase        | 0.70                       | 0.49                    |  |
|                            | Amphibole/Pyroxene | 2.22                       | 2.61                    |  |
|                            | K-Feldspar         | 0.05                       | 0.02                    |  |
|                            | Epidote            | 0.07                       | 0.07                    |  |
|                            | Titanite/sphene    | 0.01                       | 0.02                    |  |
|                            | Other Silicates    | 0.05                       | 0.09                    |  |
|                            | Carbonates         | 0.01                       | 0.02                    |  |
|                            | Apatite            | 0.06                       | 0.14                    |  |
|                            | Other              | 0.02                       | 0.03                    |  |
|                            | Total              | 100.00                     | 100.00                  |  |
| Mean                       | Pvrrhotite         | 17                         | 16                      |  |
| Grain Size                 | Chalcopyrite       | 9                          | 8                       |  |
| by                         | Pentlandite        | 11                         | 9                       |  |
| Frequency                  | Pvrite/Marcasite   | 10                         | 8                       |  |
| (um)                       | Other Sulphides    | 9                          | 9                       |  |
| (µ11)                      | Fe-Oxides          | 13                         | 11                      |  |
|                            | Other Oxides       | 10                         | 10                      |  |
|                            | Chlorite/Clavs     | 10                         | 9                       |  |
|                            | Biotite            | 13                         | 12                      |  |
|                            | Talc               | 9                          | 9                       |  |
|                            | Quartz             | 12                         | 11                      |  |
|                            | Plagioclase        | 14                         | 11                      |  |
|                            | Amphibole/Pvroxene | 14                         | 11                      |  |
|                            | K-Feldspar         | 12                         | 10                      |  |
|                            | Epidote            | 9                          | 11                      |  |
|                            | Titanite/sphene    | s<br>R                     | 11                      |  |
|                            | Other Silicates    | 10                         | Q                       |  |
|                            | Carbonates         | R R                        | 10                      |  |
|                            | Anatite            | a                          | 10                      |  |
|                            | Other              | o o                        | 9                       |  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Cu Deportment - Absolute



|                 | F8 Cu/Ni 1st Cleaner Tails: | F8 Po 1st Cleaner Tails: |
|-----------------|-----------------------------|--------------------------|
| Chalcopyrite    | 0.01                        | 0.03                     |
| Other_Sulphides | 0.00                        | 0.00                     |
| Total           | 0.01                        | 0.03                     |

# Cu Deportment - Normalized



|                 | F8 Cu/Ni 1st Cleaner Tails: | F8 Po 1st Cleaner Tails: |
|-----------------|-----------------------------|--------------------------|
| Chalcopyrite    | 100.00                      | 98.38                    |
| Other_Sulphides | 0.00                        | 1.62                     |
| Total           | 100.00                      | 100.00                   |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Ni Deportment - Absolute



# Ni Deportment - Normalized



|                 | F8 Cu/Ni 1st Cleaner Tails: | F8 Po 1st Cleaner Tails: |
|-----------------|-----------------------------|--------------------------|
| Pyrrhotite      | 36.09                       | 62.69                    |
| Pentlandite     | 63.35                       | 37.12                    |
| Other_Sulphides | 0.56                        | 0.19                     |
| Total           | 100.00                      | 100.00                   |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pentlandite Liberation



### Absolute Mass of Pentlandite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Pn      | 0.39                       | 0.15                    |
| Lib Pn       | 0.06                       | 0.01                    |
| Midds Pn     | 0.46                       | 0.10                    |
| Sub Midds Pn | 0.76                       | 0.25                    |
| Locked Pn    | 0.65                       | 0.28                    |
| Total        | 2.31                       | 0.78                    |



### Normalized Mass of Pentlandite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Pn      | 16.66                      | 19.49                   |
| Lib Pn       | 2.70                       | 1.16                    |
| Midds Pn     | 19.76                      | 12.30                   |
| Sub Midds Pn | 32.77                      | 31.32                   |
| Locked Pn    | 28.12                      | 35.73                   |
| Total        | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Pentlandite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Pn       | 0.39                       | 0.15                    |
| Lib Pn        | 0.06                       | 0.01                    |
| Pn :Po        | 1.76                       | 0.47                    |
| Pn: Cp        | 0.01                       | 0.00                    |
| Pn :Py        | 0.00                       | 0.00                    |
| Pn :Fe-Oxides | 0.00                       | 0.00                    |
| Pn: Sil       | 0.02                       | 0.02                    |
| Pn: Cp :Py    | 0.00                       | 0.00                    |
| Complex       | 0.08                       | 0.13                    |
| Total         | 2.31                       | 0.78                    |



### Normalized Mass of Pentlandite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Pn       | 16.66                      | 19.49                   |
| Lib Pn        | 2.70                       | 1.16                    |
| Pn :Po        | 76.20                      | 60.56                   |
| Pn: Cp        | 0.47                       | 0.00                    |
| Pn :Py        | 0.00                       | 0.00                    |
| Pn :Fe-Oxides | 0.00                       | 0.00                    |
| Pn: Sil       | 0.67                       | 2.55                    |
| Pn: Cp :Py    | 0.00                       | 0.00                    |
| Complex       | 3.30                       | 16.24                   |
| Total         | 100.00                     | 100.00                  |

|              | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|              | F8 Cu/Ni 1st Cleaner Tails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F8 Po 1st Cleaner Tails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Barren       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              | and the second free all second the second states and an an even second from a second by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TARTALLE FOR LOS MARKED MARTINE ALLE THATAGE SAFEDARE ARE ARE ARE ARE ARE ARE ARE ARE ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Background       |
|              | and the second states     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pvrrhotite       |
| Locked Pn    | and the state of the second state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chalconyrita     |
|              | 化化化合金 化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pentlandite      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>A second second second for a second for a second second for a second seco</li></ul> | Other-Cu-Sulphid |
| Sub Midde Do | Filler and the second secon       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Sub Midus Pi | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pyrite           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other_Sulphides  |
|              | a province a second and a second province of the second province of     | A second seco          | Fe-Oxides        |
|              | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Midds Pn     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Silicates        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other            |
|              | NAME AND A DESCRIPTION OF A DESCRIPTION OF<br>A DESCRIPTION OF A DESCRIPTIONO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Lib Pn       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Free Pn      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| 1100111      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |

### Image Grid - Pentlandite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5012-JUL21





High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Pyrrhotite Liberation



# Absolute Mass of Pyrrhotite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Po      | 79.84                      | 43.69                   |
| Lib Po       | 6.98                       | 44.40                   |
| Midds Po     | 2.82                       | 2.58                    |
| Sub Midds Po | 0.40                       | 0.26                    |
| Locked Po    | 0.06                       | 0.04                    |
| Barren       | 0.00                       | 0.00                    |
| Total        | 90.10                      | 90.97                   |



# Normalized Mass of Pyrrhotite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Po      | 88.61                      | 48.03                   |
| Lib Po       | 7.74                       | 48.81                   |
| Midds Po     | 3.13                       | 2.84                    |
| Sub Midds Po | 0.45                       | 0.29                    |
| Locked Po    | 0.07                       | 0.04                    |
| Barren       | 0.00                       | 0.00                    |
| Total        | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



### Absolute Mass of Pyrrhotite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Po       | 79.84                      | 71.53                   |
| Lib Po        | 6.98                       | 13.67                   |
| Po : Cp       | 0.01                       | 0.05                    |
| Po :Py        | 0.01                       | 0.01                    |
| Po: Pn        | 1.73                       | 0.47                    |
| Po :Fe-Oxides | 0.66                       | 1.24                    |
| Po: Sil       | 0.62                       | 2.07                    |
| Po: Pn :Py    | 0.00                       | 0.00                    |
| Complex       | 0.26                       | 0.84                    |
| Total         | 90.10                      | 89.88                   |





# Normalized Mass of Pyrrhotite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Po       | 88.61                      | 79.58                   |
| Lib Po        | 7.74                       | 15.21                   |
| Po : Cp       | 0.01                       | 0.06                    |
| Po :Py        | 0.01                       | 0.01                    |
| Po: Pn        | 1.92                       | 0.52                    |
| Po :Fe-Oxides | 0.73                       | 1.38                    |
| Po: Sil       | 0.69                       | 2.30                    |
| Po: Pn :Py    | 0.00                       | 0.00                    |
| Complex       | 0.29                       | 0.93                    |
| Total         | 100.00                     | 100.00                  |

|                | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | duct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                | F8 Cu/Ni 1st Cleaner Tails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F8 Po 1st Cleaner Tails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Complex        | n a manana 1972 kanana kanana kanana kanana kanana kakana kakana kanana kata kanana kanana kanana kanana kanan<br>Ina manana 1972 kanana kana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "你们有什么?""你不知道,你不是不是不是不是不是不是你的吗?""你们不是我们不是我们的?""你不是你?""你说,你们不是你不是你?""你?""你不是你?""你?"<br>"你们不是不知道?你?""你说,你不是你不是你你不是你?""你?""你?""你?""你?""你?""你?""你?""你?""你?""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| Po: Pn :Py     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Background                     |
| Po: Sil        | Settimental de la complete de la comp<br>Norden en la complete de la complete<br>La complete de la complet |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrrhotite Chalcopyrite        |
| Po : Fe-Oxides | an analysis a second second<br>I defende a second se<br>I defende a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ant for a strand of the strand of the first of the strand | Pentlandite Other-Cu-Sulphides |
| Associatio     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | en el la restruction de la construction de la construction de la construction de la construction de la constru<br>Reconstruction de la construction de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pyrite Other_Sulphides         |
| Po:Py          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbonates                     |
| Po : Cp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other                          |
| Lib Po         | and a final standard and the second of the second standard and the second standard       | anne her and the second and the second and the second                                                                                                                                                                                                                                            |                                |
| Free Po        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| Barren         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |

# Image Grid - Pyrrhotite Association

High Definition Mineralogical Analysis using

North American Nickel 18559-01 MI5012-JUL21

|  | <br> |  |  |
|--|------|--|--|
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

### **Chalcopyrite Liberation**



### Absolute Mass of Chalcopyrite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Cp      | 0.01                       | 0.02                    |
| Lib Cp       | 0.00                       | 0.00                    |
| Midds Cp     | 0.01                       | 0.01                    |
| Sub Midds Cp | 0.01                       | 0.02                    |
| Locked Cp    | 0.02                       | 0.02                    |
| Total        | 0.04                       | 0.07                    |



### Normalized Mass of Chalcopyrite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Cp      | 26.58                      | 28.26                   |
| Lib Cp       | 0.00                       | 0.00                    |
| Midds Cp     | 19.94                      | 19.57                   |
| Sub Midds Cp | 13.29                      | 28.26                   |
| Locked Cp    | 40.19                      | 23.91                   |
| Total        | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Chalcopyrite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Cp       | 0.01                       | 0.02                    |
| Lib Cp        | 0.00                       | 0.00                    |
| Ср :Ро        | 0.03                       | 0.05                    |
| Ср :Ру        | 0.00                       | 0.00                    |
| Cp: Pn        | 0.00                       | 0.00                    |
| Cp :Fe-Oxides | 0.00                       | 0.00                    |
| Cp: Sil       | 0.00                       | 0.00                    |
| Cp: Pn :Py    | 0.00                       | 0.00                    |
| Complex       | 0.00                       | 0.00                    |
| Total         | 0.04                       | 0.07                    |





### Normalized Mass of Chalcopyrite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Cp       | 26.58                      | 28.26                   |
| Lib Cp        | 0.00                       | 0.00                    |
| Cp :Po        | 66.77                      | 67.39                   |
| Ср :Ру        | 0.00                       | 0.00                    |
| Cp: Pn        | 6.65                       | 0.00                    |
| Cp :Fe-Oxides | 0.00                       | 0.00                    |
| Cp: Sil       | 0.00                       | 0.00                    |
| Cp: Pn :Py    | 0.00                       | 0.00                    |
| Complex       | 0.00                       | 4.35                    |
| Total         | 100.00                     | 100.00                  |



High Definition Mineralogical Analysis using

# Image Grid - Chalcopyrite Association

256

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Pyrite Liberation**



# Absolute Mass of Pyrite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Py      | 0.13                       | 0.01                    |
| Lib Py       | 0.00                       | 0.00                    |
| Midds Py     | 0.01                       | 0.00                    |
| Sub Midds Py | 0.01                       | 0.01                    |
| Locked Py    | 0.01                       | 0.00                    |
| Total        | 0.16                       | 0.02                    |



### Normalized Mass of Pyrite Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Py      | 80.81                      | 45.45                   |
| Lib Py       | 0.00                       | 0.00                    |
| Midds Py     | 9.09                       | 9.09                    |
| Sub Midds Py | 5.05                       | 27.27                   |
| Locked Py    | 5.05                       | 18.18                   |
| Total        | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



### Absolute Mass of Pyrite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Py       | 0.13                       | 0.01                    |
| Lib Py        | 0.00                       | 0.00                    |
| Py :Po        | 0.02                       | 0.01                    |
| Py :Cp        | 0.00                       | 0.00                    |
| Py :Pn        | 0.00                       | 0.00                    |
| Py :Fe-Oxides | 0.00                       | 0.00                    |
| Py :Sil       | 0.00                       | 0.00                    |
| Complex       | 0.00                       | 0.00                    |
| Total         | 0.16                       | 0.02                    |





# Normalized Mass of Pyrite Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Py       | 80.81                      | 45.45                   |
| Lib Py        | 0.00                       | 0.00                    |
| Py :Po        | 13.13                      | 54.55                   |
| Py :Cp        | 0.00                       | 0.00                    |
| Py :Pn        | 0.00                       | 0.00                    |
| Py :Fe-Oxides | 2.02                       | 0.00                    |
| Py :Sil       | 3.03                       | 0.00                    |
| Complex       | 1.01                       | 0.00                    |
| Total         | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Silicates Liberation**



### Absolute Mass of Silicates Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Sil      | 4.62                       | 3.43                    |
| Lib Sil       | 0.13                       | 0.14                    |
| Midds Sil     | 0.25                       | 0.47                    |
| Sub Midds Sil | 0.17                       | 0.57                    |
| Locked Sil    | 0.13                       | 0.72                    |
| Total         | 5.30                       | 5.33                    |



| 20            |                      |       | -                       |
|---------------|----------------------|-------|-------------------------|
| 10            |                      |       |                         |
| 0             | F8 Cu/Ni 1st Cleaner | Tails | F8 Po 1st Cleaner Tails |
| Locked Sil    | 2.38                 |       | 13.45                   |
| Sub Midds Sil | 3.18                 |       | 10.73                   |
| Midds Sil     | 4.79                 |       | 8.74                    |
| Lib Sil       | 2.41                 |       | 2.66                    |
| Free Sil      | 87.24                |       | 64.41                   |

# Normalized Mass of Silicates Across Samples

| Mineral Name  | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|---------------|----------------------------|-------------------------|
| Free Sil      | 87.24                      | 64.41                   |
| Lib Sil       | 2.41                       | 2.66                    |
| Midds Sil     | 4.79                       | 8.74                    |
| Sub Midds Sil | 3.18                       | 10.73                   |
| Locked Sil    | 2.38                       | 13.45                   |
| Total         | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# **Silicates Association**



# Absolute Mass of Silicates Across Samples

| Mineral Name   | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|----------------|----------------------------|-------------------------|
| Free Sil       | 4.62                       | 3.43                    |
| Lib Sil        | 0.13                       | 0.14                    |
| Sil : Cp       | 0.00                       | 0.00                    |
| Sil: Po        | 0.44                       | 1.49                    |
| Sil :Py        | 0.00                       | 0.00                    |
| Sil: Pn        | 0.02                       | 0.02                    |
| Sil :Fe-Oxides | 0.02                       | 0.02                    |
| Complex        | 0.07                       | 0.23                    |
| Total          | 5.30                       | 5.33                    |





# Normalized Mass of Silicates Across Samples

| Mineral Name   | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|----------------|----------------------------|-------------------------|
| Free Sil       | 87.24                      | 64.41                   |
| Lib Sil        | 2.41                       | 2.66                    |
| Sil : Cp       | 0.00                       | 0.00                    |
| Sil: Po        | 8.29                       | 27.88                   |
| Sil :Py        | 0.06                       | 0.00                    |
| Sil: Pn        | 0.37                       | 0.35                    |
| Sil :Fe-Oxides | 0.33                       | 0.41                    |
| Complex        | 1.30                       | 4.29                    |
| Total          | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

# Fe-Ox Liberation



# Absolute Mass of Fe-Ox Across Samples

| Mineral Name    | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|-----------------|----------------------------|-------------------------|
| Free Fe-Ox      | 0.81                       | 1.53                    |
| Lib Fe-Ox       | 0.38                       | 0.28                    |
| Midds Fe-Ox     | 0.30                       | 0.72                    |
| Sub Midds Fe-Ox | 0.29                       | 0.53                    |
| Locked Fe-Ox    | 0.16                       | 0.56                    |
| Total           | 1.95                       | 3.62                    |



| 20              |                            |                         |
|-----------------|----------------------------|-------------------------|
|                 |                            |                         |
| 10              |                            |                         |
| 0               |                            |                         |
| 0               | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
| Locked Fe-Ox    | 8.09                       | 15.43                   |
| Sub Midds Fe-Ox | 15.15                      | 14.57                   |
| Midds Fe-Ox     | 15.41                      | 19.80                   |
| ■Lib Fe-Ox      | 19.70                      | 7.86                    |
| ■Free Fe-Ox     | 41.65                      | 42.35                   |

# Normalized Mass of Fe-Ox Across Samples

| Mineral Name    | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|-----------------|----------------------------|-------------------------|
| Free Fe-Ox      | 41.65                      | 42.35                   |
| Lib Fe-Ox       | 19.70                      | 7.86                    |
| Midds Fe-Ox     | 15.41                      | 19.80                   |
| Sub Midds Fe-Ox | 15.15                      | 14.57                   |
| Locked Fe-Ox    | 8.09                       | 15.43                   |
| Total           | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)



# Absolute Mass of Fe-Ox Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Fe-Ox   | 0.81                       | 1.53                    |
| Lib Fe-Ox    | 0.38                       | 0.28                    |
| Fe-Ox :Cp    | 0.00                       | 0.00                    |
| Fe-Ox :Po    | 0.24                       | 0.67                    |
| Fe-Ox :Py    | 0.00                       | 0.00                    |
| Fe-Ox:Py:NOP | 0.02                       | 0.05                    |
| Fe-Ox :Sph   | 0.00                       | 0.00                    |
| Fe-Ox :NOP   | 0.00                       | 0.00                    |
| Complex      | 0.49                       | 1.08                    |
| Total        | 1.95                       | 3.62                    |





### Normalized Mass of Fe-Ox Across Samples

| Mineral Name | F8 Cu/Ni 1st Cleaner Tails | F8 Po 1st Cleaner Tails |
|--------------|----------------------------|-------------------------|
| Free Fe-Ox   | 41.65                      | 42.35                   |
| Lib Fe-Ox    | 19.70                      | 7.86                    |
| Fe-Ox :Cp    | 0.00                       | 0.00                    |
| Fe-Ox :Po    | 12.13                      | 18.50                   |
| Fe-Ox :Py    | 0.00                       | 0.00                    |
| Fe-Ox:Py:NOP | 1.12                       | 1.35                    |
| Fe-Ox Sph    | 0.00                       | 0.00                    |
| Fe-Ox :NOP   | 0.00                       | 0.00                    |
| Complex      | 25.39                      | 29.96                   |
| Total        | 100.00                     | 100.00                  |

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

### **Cumulative Retained Grain Size Distribution**



High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

### **Cumulative Retained Grain Size Distribution**

